OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 1 — Jan. 1, 2005
  • pp: 413–

Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons

Alexandra Boltasseva, Thomas Nikolajsen, Kristjan Leosson, Kasper Kjaer, Morten S. Larsen, and Sergey I. Bozhevolnyi

Journal of Lightwave Technology, Vol. 23, Issue 1, pp. 413- (2005)


View Full Text Article

Acrobat PDF (932 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

New optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented. Guiding and routing of electromagnetic radiation along nanometer-thin and micrometer-wide gold stripes embedded in polymer via excitation of LR-SPPs is investigated in the wavelength range of 1250-1650 nm. LR-SPP guiding properties, such as the propagation loss and mode-field diameter, are investigated for different stripe widths and thicknesses. A propagation loss of ~6 dB/cm, a coupling loss of ~0.5 dB (per facet), and a bend loss of ~5 dB for a bend radius of 15 mm are evaluated for 15-nm-thick and 8-µm-wide stripes at the wavelength of 1550 nm. LR-SPP-based 3-dB power Y-splitters, multimode interference waveguides, and directional couplers are demonstrated and investigated. At 1570 nm, coupling lengths of 1.9 and 0.8 mm are found for directional couplers with, respectively, 4-and 0-µm-separated waveguides formed by 15-nm-thick and 8-µm-wide gold stripes. LR-SPP-based waveguides and waveguide components are modeled using the effective-refractive-index method, and good agreement with experimental results is obtained.

© 2005 IEEE

Citation
Alexandra Boltasseva, Thomas Nikolajsen, Kristjan Leosson, Kasper Kjaer, Morten S. Larsen, and Sergey I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightwave Technol. 23, 413- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-1-413


Sort:  Journal  |  Reset

References

  1. Y. P. Li and C. H. Henry, "Silica-based optical integrated circuits", Proc. Inst. Elect. Eng. Optoelectronics, vol. 143, pp. 263-280, 1996.
  2. R. M. d. Ridder, K. Worhoff, A. Driessen, P. V. Lambeck and H. Albers, "Silicon oxynitride planar waveguiding structures for applications in optical communication", IEEE J. Sel. Topics Quantum Electron., vol. 4, no. 6, pp. 930-937, Nov.-Dec. 1998.
  3. M. F. Grant, "Integrated optical waveguide devices on silicon for optical communications", in IEE Colloquium 'Planar Silicon Hybrid Optoelectronics Dig. 1994/198, 1994, p. 1-1-1/10.
  4. R. Chakraborty, "Integrated optical waveguides in LiNbO3: Modeling and experimental analysis", in Proc. SPIE-Int. Soc. Optical Engineering, vol. 4417, 2001, pp. 278-285.
  5. R. M. Almeida, "Sol-gel planar waveguides for integrated optics", J. Non-Cryst. Solids, vol. 259, pp. 176-181, 1999.
  6. L. A. Eldada, "Polymer integrated optics: Promise versus practicality", in Proc. SPIE-Int. Soc. Optical Engineering, 2002, pp. 11-22.
  7. P. Coudray, P. Etienne and Y. Moreau, "Integrated optics based on organo-mineral materials", Material Science Semiconductor Processing, vol. 3, pp. 331-337, 2000.
  8. H. Raether, Surface Plasmons, Berlin: Germany: Springer-Verlag, 1998.
  9. W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon subwavelength optics", Nature, vol. 424, pp. 824-830, 2003.
  10. B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye and D. W. Pohl, "Local excitation, scattering and interference of surface plasmons", Phys. Rev. Lett., vol. 77, pp. 1889-1892, 1996.
  11. S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons", Phys. Rev. Lett., vol. 78, pp. 2823-2826, 1997.
  12. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes", Appl. Phys. Lett., vol. 79, pp. 51-53, 2001.
  13. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures", Phys. Rev. Lett., vol. 86, pp. 3008-3011, 2001.
  14. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures", Appl. Phys. Lett., vol. 79, pp. 1076-1078, 2001.
  15. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson and J. Erland, "Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface", Opt. Lett., vol. 26, pp. 734-736, 2001.
  16. J.-C. Weeber, A. Dereux and C. Girard, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light", Phys. Rev. B, Condens. Matter, vol. 60, pp. 9061-9068, 1999.
  17. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes", Phys. Rev. B, Condens. Matter, vol. 64, pp. 045 411-045 419, 2001.
  18. D. Sarid, "Long-range surface-plasma waves on very thin metal films", Phys. Rev. Lett., vol. 47, pp. 1927-1930, 1981.
  19. J. J. Burke, G. I. Stegeman and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films", Phys. Rev. B, Condens. Matter, vol. 33, pp. 5186-5201, 1986.
  20. R. Charbonneau, P. Berini, E. Berolo and E. Lisicka-Skrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width", Opt. Lett., vol. 25, pp. 844-846, 2000.
  21. T. Nikolajsen, K. Leosson, I. Salakhutdinov and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths", Appl. Phys. Lett. , vol. 82, pp. 668-670, 2003.
  22. Y. Y. Lu and P. L. Ho, "Beam propagation modeling of arbitrarily bent waveguides", IEEE Photon. Technol. Lett., vol. 14, no. 12, pp. 1698 -1700, Dec. 2002.
  23. A. Kumar and S. Aditya, "Performance of S-bends for integrated-optic waveguides", Microwave Optical Technology Lett., vol. 19, pp. 289-292, 1998.
  24. H. v. Brug, F. H. Groen, Y. S. Oei, J. W. Pedersen, E. C. M. Pennings, D. K. Doeksen and J. J. G. M. v. d. Tol, "Low-loss straight and curved ridge waveguides in LPE-grown GaInAsP", Electron. Lett., vol. 25, pp. 1330-1332, 1989.
  25. R. C. Alferness, "Guided-wave devices for optical communication", IEEE J. Quantum Electron., vol. QE-17, no. 6, pp. 946-959, Jun. 1981.
  26. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: Principles and applications", J. Lightw. Technol., vol. 13, no. 4, pp. 615-627, Apr. 1995.
  27. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures", Phys. Rev. B, Condens. Matter, vol. 61, pp. 10 484-10 503, 2000.
  28. H. Kogelnik, Theory of Dielectric Waveguides, T. Tamir, Ed. Berlin: Germany: Springer-Verlag, 1979, pp. 64-66.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited