OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 1 — Jan. 1, 2005
  • pp: 44–

Modeling and Experimental Demonstration of Ultracompact Multiwavelength Distributed Fabry-Pérot Fiber Lasers

Guillaume Brochu, Sophie LaRochelle, and Radan Slavík

Journal of Lightwave Technology, Vol. 23, Issue 1, pp. 44- (2005)


View Full Text Article

Acrobat PDF (426 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper presents a complete model for the design and optimization of multiwavelength distributed Fabry-Pérot (DFP) fiber lasers that are made by superimposing two chirped fiber Bragg gratings in a photosensitive codoped erbium-ytterbium (Er-Yb) fiber. The model is based on a matrix formulation of coupled-mode equations taking into account the chirped grating superstructure and including a spectrally resolved gain medium. The performed analysis reveals that the signal power of each channel is strongly localized near a minimum of the superstructured-grating envelope. As a consequence, the overlap between the power distributions in neighboring cavities is small, thus reducing the effect of cross-gain saturation and allowing a high number of channels in a short piece of fiber. The simulations also show how the saturation of the cross-relaxation mechanism between ytterbium and erbium leads to flat output spectra without the need for an additional equalization scheme such as a complex grating apodization profile. Furthermore, to validate the theoretical model,we present the experimental realization and characterization of a multiwavelength laser emitting in a single-mode and single-polarization over 16 wavelengths spaced by 50 GHz and with a total output power of 52 mW.

© 2005 IEEE

Citation
Guillaume Brochu, Sophie LaRochelle, and Radan Slavík, "Modeling and Experimental Demonstration of Ultracompact Multiwavelength Distributed Fabry-Pérot Fiber Lasers," J. Lightwave Technol. 23, 44- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-1-44


Sort:  Journal  |  Reset

References

  1. Y. Suzaki, H. Yakasa, H. Mawatari, K. Yoshono, Y. Kawaguchi, S. Oku, R. Iga and H. Okamoto, "Beyond 80-Gbit/s-throughput monolithically integrated eight-channel WDM modulator module for multi-channel optical transmitter", in Optical Fiber Communication Conf. CD-ROM, Washington, DC, 2004, Paper TuE1.
  2. G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem and R. Crickmore, "Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array", IEEE Photon. Technol. Lett., vol. 15, pp. 1579-1581, 2003.
  3. L. Bach, I. P. Reithmaier, A. Forchel, J. L. Gentner and L. Goldstein, "Multiwavelength laterally complex coupled distributed feedback laser arrays with monolithically integrated combiner fabricated by focused-ion-beam lithography", Appl. Phys. Lett., vol. 79, pp. 2324-2326, 2001.
  4. M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stulz and H. M. Presby, "An 18-channel multifrequency laser", IEEE Photon. Technol. Lett., vol. 8, pp. 870 -872, 1996.
  5. J. Liu, J. Yao, J. Yao and T. Yeap, "Single longitudinal mode multiwavelength fiber ring lasers", in Optical Fiber Communication Conf. CD-ROM, Washington, DC, 2004,Paper ThB2.
  6. S. Yamashita, K. Hsu and W. H. Loh, "Miniature erbium:ytterbium fiber Fabry-Perot multiwavelength lasers", IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 1058-1064, 1997.
  7. J. Hubner, P. Varming and M. Kristensen, "Five wavelength DFB fiber laser source for WDM systems", Electron. Lett., vol. 33, pp. 139-140, 1997.
  8. M. Ibsen, S. U. Alam, M. N. Zervas, A. B. Grudinin and D. N. Payne, "8-and 16-channels all-fiber DFB laser WDM transmitters with integrated pump redundancy", IEEE Photon. Technol. Lett., vol. 11, pp. 1114-1116, 1999.
  9. M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. N. Zervas and R. I. Laming, "Multiple wavelength all-fiber DFB lasers", Electron. Lett., vol. 36, pp. 143-144, 2000.
  10. R. Slav�k, I. Castonguay, S. LaRochelle and S. Doucet, "Short multiwavelength fiber laser made of a large-band distributed Fabry-P�rot structure", IEEE Photon. Technol. Lett., vol. 16, pp. 1017 -1019, 2004.
  11. G. Brochu, R. Slav�k and S. LaRochelle, "Ultra-compact 52 mW 50-GHz spaced 16 channels narrow-line and single-polarization fiber laser", in Optical Fiber Communication Conf., Washington, DC, 2004,Postdeadline paper PDP22.
  12. G. Brochu, R. Slav�k and S. LaRochelle, "Analysis and optimization of a multiwavelength distributed Fabry-Perot fiber laser", in CLEO/IQEC and PhAST Tech. Dig. CDROM, Washington, DC, 2004,Paper ThGG5.
  13. T. Erdogan, "Fiber Grating Spectra", J. Lightw. Technol. , vol. 15, pp. 1277-1294, 1997.
  14. V. C. Lauridsen, J. H. Povlsen and P. Varming, "Design of DFB fiber lasers", Electron. Lett., vol. 34, pp. 2028-2030, 1998.
  15. S. W. Lovseth and E. Ronnekleiv, "Fundamental and higher order mode thresholds of DFB fiber lasers", J. Lightw. Technol., vol. 20, pp. 494-501, 2002.
  16. J. Po�tte, S. Blin, G. Brochu, L. Bramerie, R. Slav�k, J.-C. Simon, S. LaRochelle and P. Besnard, "Relative intensity noise of a multiwavelength fiber laser", Electron. Lett. , vol. 40, pp. 724-726, Jun. 2004.
  17. S. W. Lovseth and D. Y. Stepanov, "Analysis of multiple wavelength DFB fiber lasers", IEEE J. Quantum Electron., vol. 37, pp. 770-780, 2001.
  18. E. Ronnekleiv, M. N. Zervas and J. T. Kringlebotn, "Modeling of polarization-mode competition in fiber DFB lasers", IEEE J. Quantum Electron., vol. 34, pp. 1559-1569, 1998.
  19. F. Di Pasquale, "Modeling of highly-efficient grating-feedback and Fabry-Perot Er-Yb Co-Doped fiber lasers", IEEE J. Quantum Electron., vol. 32, pp. 326-332, 1996.
  20. E. Yahel and A. A. Hardy, "Modeling and optimization of short Er3+- Yb3+ codoped fiber lasers", IEEE J. Quantum Electron., vol. 39, pp. 1444-1451, 2003.
  21. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper and D. C. Hanna, "Lifetime quenching in Yb-doped fibers", Opt. Commun., vol. 136, pp. 375-378, 1997.
  22. Z. Burshtein, Y. Kalisky, S. Z. Levy, P. Le Boulanger and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses", IEEE J. Quantum Electron., vol. 36, pp. 1000-1007, 2000.
  23. K. Yelen, M. N. Zervas and L. M. B. Hickey, "Fiber DFB lasers with ultimate efficiency", in Optical Fiber Communication Conf., Washington, DC, 2004,Postdeadline paper PDP21.
  24. R. Slav�k, S. Doucet and S. LaRochelle, "High-performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings", J. Lightw. Technol., vol. 21, pp. 1059-1065, 2003.
  25. Y. Z. Xu, H. Y. Tam, S. Y. Liu and M. S. Demokan, "Pump-induced thermal effects in Er-Yb fiber grating DBR lasers", IEEE Photon. Technol. Lett., vol. 10, pp. 1253-1255, 1998.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited