OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 23, Iss. 1 — Jan. 1, 2005
  • pp: 66–

Low-Loss Wavelength Routers for WDM Optical Networks and High-Capacity IP Routers

Corrado Dragone

Journal of Lightwave Technology, Vol. 23, Issue 1, pp. 66- (2005)

View Full Text Article

Acrobat PDF (425 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The author proposes, for future wavelength-division-multiplexing (WDM) optical networks, new wavelength routers with reduced losses and improved wavelength response. This paper focuses on the most general type of wavelength router, the N x N router. This device is particularly attractive in a metropolitan network, where a star arrangement based on the N x N router allows the network configuration (the wavelength path of each signal) to be varied and managed in a simple fashion. The N x N router has been shown to be suitable for both packet and circuit switching. In particular,ultrahigh-capacity IP routers have been demonstrated by using fast tunable lasers and burst mode receivers.

© 2005 IEEE

Corrado Dragone, "Low-Loss Wavelength Routers for WDM Optical Networks and High-Capacity IP Routers," J. Lightwave Technol. 23, 66- (2005)

Sort:  Journal  |  Reset


  1. A. Saleh and J. Simmons, "Architectural principles of optical regional and metropolitan access networks", J. Lightw. Technol., vol. 17, no. 12, pp. 2431-2448, Dec. 1999.
  2. K. Noguchi, Y. Koike and H. Tanobe, et al. "Field trial of full-mesh WDM network (AWG-STAR) in metropolitan/local area", J. Lightw. Technol., vol. 22, no. 2, pp. 329-335, Feb. 2004.
  3. J. Gripp and M. Duelk, et al. "Optical switch fabric for ultra-high-capacity IP routers", J. Lightw. Technol. , vol. 21, no. 11, pp. 2839-2850, Nov. 2003.
  4. R. E. Wagner, L. Nederlof, M. Vaughn, S. De Maesschalck, D. Cotter and B. Hmenway, "Interconnection of metropolitan and backbone networks", in Proc. OFC, 2003, pp. 479-481.
  5. K. Kato, A. Akada and A. Sakai, et al. "32 x 32 full-mesh (1024 path) wavelength routing WDM network based on uniform loss and cyclic-frequency arrayed-waveguide grating", Inst. Elect. Eng. Electron. Lett., vol. 36, no. 15, pp. 1294-1295, Jul. 2000.
  6. Y. Sakai, et al. "Management system for full-mesh WDM AWG-STAR network", in ECOC 2001 , 2001, no. We.B.1.5.
  7. C. Dragone, "Optimum design of a planar array of tapered waveguides", J. Opt. Soc. Amer. A., vol. 7, no. 11, pp. 2081-2093, Nov. 1990.
  8. C. Dragone, "An Nx N optical multiplexer using a planar arrangement of two star couplers", IEEE Photon. Technol. Lett., vol. 28, pp. 812 -815, 1991.
  9. M. Okayama and M. Kawahara, "Prototype 32 x 32 optical switch matrix", Inst. Elect. Eng. Electron. Lett., vol. 30, no. 14, pp. 1128-1129, 1994.
  10. M. K. Smit and C. van Dam, "Phasar based WDM devices: principles, design and applications", IEEE J. Sel. Topics Quantum Electron., vol. 2, pp. 236-250, 1996.
  11. P. Bernasconi, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski and A. Paunescu, "Large Nx N waveguide grating routers", J. Lightw. Technol., vol. 18, no. 7, pp. 985-991, Jul. 2000.
  12. T. Ciba, et al. "Chromatic dispersion free Fourier transform-based wavelength splitters for D-WDM", in Proc. OECC 2000,, Paper 13B2-2,. pp. 374-375.
  13. M. Oguma, et al. "Four-channel flat-top and low low-loss filter for wide passband WDM access network", Electron. Lett., vol. 36, no. 8, pp. 514-515, Apr. 2001.
  14. T. Ciba, et al. "Novel architecture of wavelength interleaving filter with fourier transform-based MZI's", in OFC 2001 Tech. Dig. Series, 2001, WB5-1.
  15. M. Oguma, et al. "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings", IEEE Photon. Technol. Lett., vol. 14, pp. 328 -3330, Mar. 2002.
  16. C. Dragone, "Planar waveguide array with nearly ideal radiation characteristic", Electron. Lett., vol. 16, Aug. 2002.
  17. C. Dragone, "Theory of multiplexing with rectangular transfer functions", IEEE J. Sel. Topics. Quantum Electron., vol. 8, no. 6, pp. 1168-1178, Nov. 2002.
  18. P. Bernasconi, et al. "Nx N arrayed waveguide gratings with improved frequency accuracy", IEEE J. Sel. Topics. Quantum Electron. , vol. 8, no. 6, pp. 1115-1121, Nov. 2002.
  19. H. Takahashi, K. Oda and H. Toba, "Impact of crosstalk in an arrayed-waveguide multiplexer on N x N optical interconnection", J. Lightw. Technol., vol. 14, no. 6, pp. 1097-1105, June 1996.
  20. C. Dragone, "Crosstalk caused by fabrication errors in a generalized Mach-Zehnder interferometer", Inst. Elect. Eng. Electron. Lett., vol. 33, no. 15, pp. 1326-1327, Jul. 1997.
  21. id="ref21"twemrule="yes"> C. Dragone, "Efficient techniques for widening the passband of a waveguide router", J. Lightw. Technol., vol. 16, no. 10, pp. 1895-1906, Oct. 1998.
  22. C. Dragone, "Frequency routing device having a wide and substantially flat passband", U.S. Patent 5 412 744, May 1995.
  23. M. R. Amersfoort, et al. "Passband broadening of integrated arrayed waveguide filters using multimode interference couplers", Inst. Elect. Eng. Electron. Lett., vol. 23, pp. 449-451, 1996.
  24. K. Okamoto, et al. "Flat spectral response arrayed waveguide multiplexer with parabolic waveguide horns", Electron. Lett., vol. 32, pp. 11 661-11 662, 1996.
  25. M. Okawa, et al. "Low loss and wide passband arrayed waveguide grating demultiplexer", in ECOC'98, Madrid, Spain,Sep. <day>20-24</day> 1998, pp. 323-324.
  26. C. Dragone, et al. "Waveguide grating router with maximally flat passband produced by spatial filtering", Inst. Elect. Eng. Electron. Lett., vol. 33, no. 15, pp. 1312-1314, Jul. 1997.
  27. C. Dragone, "Frequency routing device having a wide and substantially flat passband", U.S. Patent 5 488 680, Jan. 1996.
  28. C. R. Doerr, et al. "Compact and low loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer", IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 56-58, Jan. 2002.
  29. C. R. Doerr, et al. "Integrated band demultiplexer using waveguide grating routers", IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1088-1099, Aug. 2003.
  30. G. H. B. Thompson, R. Epworth, C. Rogers, S. Day and S. Ojha, "An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer", in OFC '98 Tech. Dig. , Feb. 1998, p. 77.
  31. I. Nishi, T. Oguchi and K. Kato, "Broad-passband-width optical filter for multi/demultiplexer using a diffraction grating and a retroreflector prism", Electron. Lett., vol. 21, no. 10, pp. 423-424, May 1985.
  32. R. Kasahara, et al. "Cyclic and rectangular passband optical passband filter using AWG pair", Electron. Lett., vol. 39, no. 12, pp. 910-911, Jun. 2003.
  33. Y. P. Li, "Optical device having low insertion loss", Apr. <day>28</day>, 1998.
  34. C. R. Doerr, et al. "Array waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range", IEEE Photon. Technol. Lett., vol. 13, no. 4, pp. 329-331, Apr. 2001.
  35. C. Dragone, "Waveguide array with improved efficiency for wavelength routers and star couplers in integrated optics", U.S. Patent 6 058 233, May 2000.
  36. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno and Y. Ohmori, "Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides", IEEE Photon. Technol. Lett., vol. 12, pp. 1180-1182, Sep. 2000.
  37. C. Dragone,
  38. C. R. Doerr, et al. "Eight-wavelength add-drop filter with true reconfigurabillity", IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 138-140, Jan. 2003.
  39. K. Maru, et al. "Low loss arrayed -waveguide grating with high index regions of slab-to-array interface", Electron. Lett., vol. 37, no. 21, pp. 1287-1289, Oct. 2001.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited