OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 2 — Feb. 1, 2005
  • pp: 524–

Novel Hollow Optical Fibers and Their Applications in Photonic Devices for Optical Communications

Kyunghwan Oh, S. Choi, Yongmin Jung, and Jhang W. Lee

Journal of Lightwave Technology, Vol. 23, Issue 2, pp. 524- (2005)


View Full Text Article

Acrobat PDF (948 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Novel photonic devices based on a new type of waveguide, hollow optical fibers (HOF), are described. Utilizing unique three layered structure of HOF, the central air hole, germanosilicate ring core, and silica cladding along with its adiabatic mode transformation capability we demonstrated versatile applications in short-haul, long-haul optical communications, and tunable wavelength selective devices. Detailed design parameters, fabrication arts of the fibers, and operation principles of the devices are discussed.

© 2005 IEEE

Citation
Kyunghwan Oh, S. Choi, Yongmin Jung, and Jhang W. Lee, "Novel Hollow Optical Fibers and Their Applications in Photonic Devices for Optical Communications," J. Lightwave Technol. 23, 524- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-2-524


Sort:  Journal  |  Reset

References

  1. J. C. Knight, et al. "New ways to guide light", Science , vol. 296, pp. 276-277, 2002.
  2. P. Russell, "Photonic crystal fibers", Science , vol. 299, pp. 358-362, 2003.
  3. Y. Fink, et al. "Guiding optical light in air using an all-dielectric structure", J. Lightw. Technol., vol. 17, pp. 2039-2041, 1999.
  4. B. Temelkuran, et al. "Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission", Nature, vol. 420, pp. 650-653, 2002.
  5. J. A. Harrington, et al. "Transmission properties of hollow glass waveguides for the delivery of CO2 surgical laser power", IEEE J. Sel. Topics Quantum Electron., vol. 5, pp. 948-953, 1999.
  6. S. Choi, et al. "A low loss mode converter based on the adiabatically tapered hollow optical fiber", Electron. Lett., vol. 37, pp. 823-825, 2001.
  7. T. A. Birks, J. C. Knight and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber", Opt. Lett., vol. 22, p. 961, 1997.
  8. J. K. Ranka, R. S. Windeler and A. J. Stenz, "Optical properties of high-delta air-silica microstructure optical fibers", Opt. Lett., vol. 25, p. 796, 2000.
  9. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. wadsworth and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber", IEEE Photon. Technol. Lett., vol. 12, p. 807, 2000.
  10. J. Ju, W. Jin and M. S. Demokan, "Properties of a highly birefringent photonic crystal fiber", IEEE Photon. Technol. Lett., vol. 15, p. 1375, 2003.
  11. J. Ju, W. Jin and M. S. Demokan, "Two-mode operation in highly birefringent photonic crystal fiber", IEEE Photon. Technol. Lett., vol. 16, p. 2472, 2004.
  12. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks and P. S. J. Russell, "Highly birefringent photonic crystal fibers", Opt. Lett., vol. 25, p. 1325, 2000.
  13. K. Suzuki, H. Kubota, S. Kawanishi, M. Tnanka and M. Fujita, "High-speed bi-directional polarization division multiplexed optical transmission in ultra low loss (1.3 dB/km) polarization-maintaining photonic crysta fiber", Electron. Lett., vol. 37, p. 1399, 2001.
  14. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers", IEEE Photon. Technol. Lett., vol. 13, p. 588, 2001.
  15. B. J. Eggleton, P. S. Wdstbrook, C. A. Kerbage, R. S. Windeler and G. L. Burdge, "Cladding mode-resonances in air-silica microstructure optical fibers", J. Lightw. Technol., vol. 18, p. 1084, 2000.
  16. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber", Opt. Lett., vol. 27, p. 842, 2002.
  17. B. J. Eggleton, C. Kerbage, P. Westbrook, R. Windeler and A. Hale, "Microstructured optical fiber devices", Opt. Expr., vol. 9, p. 698, 2001.
  18. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee and D. J. Richardson, "2 R -regenerative all-optical switch based on a highly nonlinear holey fiber", Opt. Lett., vol. 26, p. 1233, 2001.
  19. M. Fuochi, J. R. Hayes, K. Furusawa, W. Belardi, J. C. Baggett, T. M. Monro and D. J. Richardson, "Polarization mode dispersion reduction in spun large mode area silica holey fibers", Opt. Expr., vol. 12, no. 9, p. 1972, 2004.
  20. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping", J. Opt. Soc. Amer. B, vol. 19, no. 4, p. 765, April 2002.
  21. J. Stone, "Optical transmission loss in liquid-core hollow fibers", IEEE J. Quantum Electron., vol. QE-8, no. 3, pp. 386-388, 1972.
  22. T. Kobayashi and W. J. Blau, "Laser emission from conjugated polymer in fiber waveguide structure", Electron. Lett., vol. 38, no. 2, pp. 67-68, 2002.
  23. M. Saito, A. Honda and K. Uchida, "Photochromic liquid-core fibers with nonlinear input-output characteristics", J. Lightw. Technol., vol. 21, pp. 2255-2261, 2003.
  24. S. Hayashi, A. Ishimizu, T. Tohei and M. Tachikawa, "Parametric excitation of laser-guided Cs atoms in a hollow-core optical fiber", Phys. Rev. A, vol. 68, p. 053 408, 2003.
  25. E. A. Nersesov, S. V. Popruzhenko, D. F. Zaretsky and W. Becker, "The gain of high harmonics in an atomic jet and in a hollow-core fiber", Opt. Commun., vol. 183, p. 289, 2000.
  26. S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim and Y. G. Lee, "Novel mode converter based on hollow optical fiber for gigabit LAN communication", IEEE Photon. Technol. Lett., vol. 14, pp. 248-250, Feb. 2002.
  27. S. Choi and K. Oh, "A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber", Opt. Commun., vol. 221, no. 4-6, pp. 307-312, 2003.
  28. S. Choi, T. J. Eom, J. Yu, B. H. Lee and K. Oh, "Novel all-fiber bandpass filter based on hollow optical fiber", IEEE Photon. Technol. Lett., vol. 14, pp. 1701-1703, Dec. 2002.
  29. S. Choi, Y. Jung, T. J. Eom, B. H. Lee and K. Oh, "Broadband tunable all-fiber bandpass filter based on hollow optical fiber", IEEE Photon. Technol. Lett., 2004 . to be published.
  30. Y. Jung, S. B. Lee, Jhang, W. Lee and K. Oh, "Bandwidth tuning in a novel hybrid fiber acousto-optic filter", Opt. Lett., 2004. to be published.
  31. S. R. Nagel, et al. "An overview of the modified chemical vapor deposion (MCVD) process and performance", IEEE J. Quantum Electron., vol. 18, pp. 459-475, 1982.
  32. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis", Opt. Expr., vol. 8, pp. 173-190, 2001.
  33. I.-K. Hwang, Y.-H. Lee, K. Oh and D. N. Payne, "High birefringence in elliptical hollow optical fiber", Opt. Expr., vol. 12, no. 9, pp. 1916-1923, May 2004.
  34. T. Giles, J. Fox and A. MacGregor, "Bandwidth reduction in gigabit ethernet transmission over multimode fiber and recovery through laser transmitter mode coupling", Opt. Eng., vol. 37, pp. 3156-3160, Dec. 1998.
  35. D. Marcuse, "Calculation of bandwidth from index profiles of optical fibers. 1: Theory", Appl. Opt., vol. 18, pp. 2073-2080, Jun. 1979.
  36. Z. Hass, et al. "A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems", J. Lightw. Technol., vol. 11, pp. 1125-1131, 1993.
  37. L. Raddatz, et al. "An experimental and theoretical study of the offset launching technique for the enhancement of the bandwidth of multimode fiber links", J. Lightw. Technol., vol. 16, pp. 324-331, 1998.
  38. L. J. Sargent, et al. "Simple technique for bandwidth enhancement of multimode fiber links using controlled spatial emission from vertical cavity surface emitting lasers", Electron. Lett., vol. 34, pp. 2038-2040, 1998.
  39. V. Srikant, "Broadband dispersion and dispersion compensation in high bit rate and ultra long haul systems", in Proc. Opt. Fiber Commun. (OFC) Conf. , 2001, TuH1-1.
  40. L. Gruner-Nielson, et al. "Dispersion compensating fibers and perspectives for future developments", in Proc. 26th Eur. Conf. Opt. Commun. (ECOC) , 2000, TuG6-1.
  41. C. D. Poole, et al. "Optical fiber-based dispersion compensation using higher order modes near cutoff", J. Lightw. Technol., vol. 12, pp. 1746-1758, 1994.
  42. A. H. Gnauck, et al. "Dispersion and dispersion-slope compensation of NZDSF for 40-Gb/s operation over the entire C band", in Proc. Opt. Fiber Commun. (OFC) Conf., 2000, PD8-1.
  43. S. Ramachandran, et al. "All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000-km transmission at 40 Gb/s", IEEE Photon. Techonol. Lett., vol. 13, pp. 632-634, 2001.
  44. F. Bakhti, et al. "Realization of low back-reflection, wideband fiber bandpass filters using phase shifted long-period fiber gratings", in Proc. Opt. Fiber Commun. (OFC) Conf., 1997,FB4.
  45. D. S. Starodubov, et al. "All-fiber bandpass filter with adjustable transmission", in Proc. Opt. Fiber Commun. (OFC) Conf., 1999, ThJ3.
  46. T. E. Dimmick, et al. "All-fiber acousto-optic tunable bandpass filter", in Proc. Opt. Fiber Commun. (OFC) Conf., 2001, WJ3.
  47. K. Oh, et al. "Compositional dependence of the temperature sensitivity in a long period grating imprinted on GeO2 - B2 O3 co-doped core silica fibers", OSA Trends in Opt. Photon., vol. 33, pp. 243-245, 2000.
  48. K. Shima, et al. "A novel temperature insensitive long-period fiber grating using a boron codoped-germanosilicate-core fiber", in Proc. Opt. Fiber Commun. (OFC) Conf., 1997, FB2.
  49. H. S. Kim, S. H. Yun, I. K. Kwang and B. Y. Kim, "Opt. Lett.", vol. 22, p. 1476, 1997.
  50. K. W. Cheung, "IEEE J. Sel. Areas Commun.", vol. 22, p. 1015, 1990.
  51. S. Ramachandran, Z. Wang and M. Yan, "Bandwidth control of long-period grating-based mode converters in few-mode fibers", Opt. Lett., vol. 27, no. 9, p. 698, 2002.
  52. T. Jin, Q. Li, J. Zhao, K. Cheng and X. Liu, "IEEE Photon. Technol. Lett.", vol. 14, p. 1133, 2002.
  53. D. Östling and H. E. Engan, "Opt. Lett.", vol. 20, p. 1247, 1995.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited