OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 2 — Feb. 1, 2005
  • pp: 864–

A Broad-Band Digital Filtering Approach for Time-Domain Simulation of Pulse Propagation in Optical Fiber

Xun Li, Xingzhong Chen, and Mahmood Qasmi

Journal of Lightwave Technology, Vol. 23, Issue 2, pp. 864- (2005)


View Full Text Article

Acrobat PDF (424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A broad-band digital filtering approach for the simulation of pulse propagation in the optical fiber has been developed. Unlike the most popular frequency-domain split-step method, the pulse propagation is realized by letting the signal samples pass through a preextracted digital filter where the convolution is simply made by a series of operations that consist of shift and multiplication only. It also differs from the existing time-domain split-step method in a sense that the digital filter is extracted to match the frequency-domain fiber linear transfer function in the full bandwidth range rather than in a reduced portion. This approach is verified through comparisons made with the conventional frequency-domain split-step method and is applied to the simulation of multiple-channel narrow-pulse propagation over the long-haul fiber. The main advantage brought by this approach lies in that the simulator is fully realized in a"data-flow"fashion; that is, the signal (long sample stream) is treated sample by sample, rather than block (a collection of neighboring samples) by block. Matching the fiber frequency-domain response over the full bandwidth does not require any further reduction on the propagation step since the error can be controlled through the filter length. The authors' preliminary effort on the filter length reduction on a given error reveals that a savings on both memory and computation time is also achievable in comparison with the frequency-domain split-step method.

© 2005 IEEE

Citation
Xun Li, Xingzhong Chen, and Mahmood Qasmi, "A Broad-Band Digital Filtering Approach for Time-Domain Simulation of Pulse Propagation in Optical Fiber," J. Lightwave Technol. 23, 864- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-2-864

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited