OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1105–

Raman-Enhanced Regenerative Ultrafast All-Optical Fiber XPM Wavelength Converter

Wei Wang, Henrik N. Poulsen, Lavanya Rau, Hsu-Feng Chou, John E. Bowers, and Daniel J. Blumenthal

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1105- (2005)


View Full Text Article

Acrobat PDF (652 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The Raman gain enhancement of a regenerative ultrafast all-optical cross-phase modulation (XPM) wavelength converter (WC) is quantitatively investigated and experimentally demonstrated to operate error free at 40 and 80 Gb/s. The regenerative nature of the converter is shown by experimentally demonstrating a negative 2-dB power penalty at 80 Gb/s. It is also shown that the Raman gain greatly enhances the wavelength conversion efficiency at 80 Gb/s by 21 dB at a Raman pump power of 600 mW using 1 km of highly nonlinear fiber. An analytical theory based on nonlinear phase-shift enhancement of the fiber-effective length is presented and shows the relationship between a nonlinear enhancement and Raman gain as a function of pump power and fiber design parameters. Measured parameters are used in the analytical model, and a good fit between experiment and theory is shown for two different types of fiber: one dispersion-shifted and one highly nonlinear fiber. The ultrafast response time of Raman gain makes this technique applicable to fiber-based ultrafast WCs. In addition, the applicability to other nonlinear fiber wavelength conversion techniques is discussed.

© 2005 IEEE

Citation
Wei Wang, Henrik N. Poulsen, Lavanya Rau, Hsu-Feng Chou, John E. Bowers, and Daniel J. Blumenthal, "Raman-Enhanced Regenerative Ultrafast All-Optical Fiber XPM Wavelength Converter," J. Lightwave Technol. 23, 1105- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-3-1105

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited