OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1219–

Statistics of Polarization-Dependent Gain in Fiber Raman Amplifiers

E. S. Son, J. H. Lee, and Y. C. Chung

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1219- (2005)

View Full Text Article

Acrobat PDF (513 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We developed an analytical model for the statistics of polarization-dependent gain (PDG) in both copumped and counterpumped fiber Raman amplifiers (FRAs). The validity of this model was confirmed by using experimental data and numerical simulations. The results show that the PDG in a counterpumped FRA cannot be neglected since it is only about 3 times smaller than that in a copumped FRA. Using the proposed model, we also evaluated the effects of various parameters on the PDG including the wavelength difference between the signal and pump,degree-of-polarization (DOP) of pump laser, polarization-mode dispersion,and fiber loss at the pump wavelength. In addition, the proposed model was used to analyze the requirement of the DOP of pump for the suppression of PDG within 1 dB.

© 2005 IEEE

E. S. Son, J. H. Lee, and Y. C. Chung, "Statistics of Polarization-Dependent Gain in Fiber Raman Amplifiers," J. Lightwave Technol. 23, 1219- (2005)

Sort:  Journal  |  Reset


  1. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier", IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530-532, 1999.
  2. S. Kawai, H. Masuda, K. -I. Suzuki and K. Aida, "Wide-bandwidth and long-distance WDM transmission using highly gain-flattened hybrid amplifier", IEEE Photon. Technol. Lett., vol. 11, no. 7, pp. 886-888, 1999.
  3. S. Namiki and Y. Emori, "Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes", IEEE J. Sel. Topics Quantum Electron., vol. 7, no. 1, pp. 3-16, 2001.
  4. V. E. Perlin and H. G. Winful, "On distributed Raman amplification for ultrabroad-band long-haul WDM systems", J. Lightw. Technol., vol. 20, pp. 409-416, 2002.
  5. S. Popov, E. Vanin and G. Jacobsen, "Influence of polarization mode dispersion value in dispersion-compensating fibers on the polarization dependence of Raman gain", Opt. Lett., vol. 27, no. 10, pp. 848-850, 2002.
  6. F. Bruyere and O. Audouin, "Penalties in long-haul optical amplifier systems due to polarization dependent loss and gain", IEEE Photon. Technol. Lett., vol. 6, no. 5, pp. 654-656, 1994.
  7. D. Wang and C. R. Menyuk, "Calculation of penalties due to polarization effects in a long-haul WDM system using a stokes parameter model", J. Lightw. Technol., vol. 19, pp. 487-494, 2001.
  8. J. P. Gordon and H. Kogelnik, "PMD fundamentals: Polarization mode dispersion in optical fibers", in Proc. Nat. Acad. Sci. USA, vol. 97, 2000, pp. 4541-4550.
  9. D. Mahgerefteh, H. -Y. Yu, D. L. Butler, J. Goldhar, D. Wang, E. Golovchenko, A. N. Pilipetskii, C. R. Menyuk and L. J. Joneckis, "Effect of randomly varying birefringence on the Raman gain in optical fibers", in Proc. CLEO '97, 1997, paper CThW5.
  10. P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D. Gurkan, D. W. Kim, D. W. Lee and A. E. Willner, "Statistics of polarization dependent gain in Raman fiber amplifiers due to PMD", in Proc. CLEO 2001, 2001, paper CTuJ1.
  11. S. Popov and E. Vanin, "Polarization dependence of Raman gain on propagation direction of pump and probe signal in optical fibers", in Proc. CLEO 2001, 2001, paper CTuJ5.
  12. H. H. Kee, C. R. S. Fludger and V. Handerek, "Statistical properties of polarization dependent gain in fiber Raman amplifiers", in Proc. OFC 2002, 2002, paper CTuJ5.
  13. Q. Lin and G. P. Agrawal, "Statistics of polarization-dependent gain in fiber-based Raman amplifiers", Opt. Lett., vol. 28, no. 4, pp. 227-229, 2003.
  14. Q. Lin and G. P. Agrawal, "Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers", J. Opt. Soc. Amer. B, vol. 20, no. 8, pp. 1616-1631, 2003.
  15. R. H. Stolen, "Issues in Raman gain measurements", in Tech. Dig. NIST, Symp. Optical Fiber Measurements, 2000, pp. 139-142.
  16. M. Shtaif, A. Mecozzi and J. A. Nagel, "Mean-Square magnitude of all orders of polarization mode dispersion and the relation with the bandwidth of the principal states", IEEE Photon. Technol. Lett., vol. 12, no. 1, pp. 53-55, 2000.
  17. F. Corsi, A. Galtarossa and L. Palmieri, "Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique", J. Lightw. Technol., vol. 16, pp. 1832-1843, 1998.
  18. J. G. Ellison and A. S. Siddiqui, "A fully polarimetric optical time-domain reflectometer", IEEE Photon. Technol. Lett., vol. 10, no. 2, pp. 246-248, 1998.
  19. M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda and A. F. Evans, "Effect of Raman amplification on stimulated Brillouin scattering threshold in dispersion compensating fibers", Electron. Lett., vol. 38, no. 6, pp. 268-269, 2002.
  20. I. P. Kaminow and T. Li, Optical Fiber Telecommun. IV, CA: Academic Press, 2002, ch. 15.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited