OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1244–

Interference Between Two Orthogonally Polarized Modes Traversing a Highly Birefringent Air-Silica Microstructure Fiber

Nori Shibata, Akimichi Nakazono, and Yoshinori Inoue

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1244- (2005)


View Full Text Article

Acrobat PDF (680 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Highly birefringent fibers can be used as polarization-maintaining fiber in interferometer fiber optic gyros and in pressure sensors. Interference between two orthogonally polarized modes traversing a highly birefringent air-silica microstructure fiber is investigated theoretically and experimentally. The theory includes the effect of the dispersive nature of the modal birefringence of highly birefringent fiber. Measurements are conducted using super luminescent diodes operating at the center wavelengths of 846 and 973 nm with spectral half-widths of 7.4 and 8.1 nm, respectively, and a 9-m highly birefringent fiber. Experiments yield interference fringe visibility V values of 0.4-0.5, even when the effective optical path difference between the two modes is zero. The theory well explains the temporal coherence properties of dispersively propagating waves with regard to both the magnitude of V and the shape of the coherence curve for the highly birefringent fiber. A comparison of the results from a standard single-mode fiber and from an air-silica microstructure fiber with modal birefringence of 3.2 x 10^-6 at 973 nm is made that addresses temporal coherence. The loss of temporal coherence can be ignored if the fiber has small birefringence. Furthermore,the detection sensitivity of a distributed fiber-optic pressure sensor is measured in order to characterize the temporal coherence response. The results reveal that, in fiber-optic sensors that depend on the interference between the two modes, interference signal sensitivity decreases as the chromatic dispersion difference between the two mode increases.

© 2005 IEEE

Citation
Nori Shibata, Akimichi Nakazono, and Yoshinori Inoue, "Interference Between Two Orthogonally Polarized Modes Traversing a Highly Birefringent Air-Silica Microstructure Fiber," J. Lightwave Technol. 23, 1244- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-3-1244


Sort:  Journal  |  Reset

References

  1. A. Ortigosa-Branch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks and P. St. J. Russell, "Highly birefringent photonic crystal fibers", Opt. Lett., vol. 25, pp. 1325-1327, Sep. 2000.
  2. M. J. Steel and R. M. Osgood Jr., "Polarization and dispersive properties of elliptical-hole photonic crystal fiber", J. Lightw. Technol., vol. 19, pp. 495-503, Apr. 2001.
  3. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers", IEEE Photon. Technol. Lett., vol. 13, pp. 588-590, Jun. 2001.
  4. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber", Opt. Express, vol. 9, pp. 676 -680, Dec. 2001.
  5. K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence", IEEE Photon. Technol. Lett., vol. 14, pp. 1291 -1293, Sep. 2002.
  6. I. P. Kaminow, "Polarization in optical fibers", IEEE J. Quantum Electron., vol. QE-17, pp. 15-22, Jan. 1981.
  7. T. Katsuyama, H. Matsuhara and T. Suganuma, "Low-loss single-polarization fibers", Electron. Lett., vol. 17, pp. 473-474, Jun. 1981.
  8. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki and T. Edahiro, "Low-loss single polarization fibers with asymmetrical strain birefringence", Electron. Lett., vol. 17, pp. 530-531, Jul. 1981.
  9. K. Okamoto, T. Edahiro and N. Shibata, "Polarization properties of single-polarization fibers", Opt. Lett., vol. 7, pp. 569-571, Nov. 1982.
  10. N. Shibata, K. Okamoto, K. Suzuki and Y. Ishida, "Polarization mode properties of elliptical-core fibers and stress-induced birefringent fibers", J. Opt. Soc. Amer., vol. 73, pp. 1972-1978, Dec. 1983.
  11. N. Shibata, K. Okamoto, M. Nakazawa, S. Seikai and M. Tokuda, "Polarization mode properties of an elliptical-cladding fiber", in Trans. IECE, vol. E68, May 1985, pp. 277- 283.
  12. K. Okamoto, K. Takada, M. Kawachi and J. Noda, "All PANDA-fiber gyroscope with high-birefringence fiber and broadband sources", Electron. Lett., vol. 20, pp. 429-430, 1984.
  13. S. L. A. Carrara, B. Y. Kim and H. J. Shaw, "Bias drift reduction in polarization-maintaining fiber gyroscope", Opt. Lett., vol. 12, pp. 214-216, 1987.
  14. K. Hotate and K. Tabe, "Drift of an optical fiber gyroscope caused by the Faraday effect: Influence of the earth's magnetic field", Appl. Opt. , vol. 25, pp. 1086-1092, 1986.
  15. T. Saida and K. Hotate, "General formula describing drift of interferometer fiber-optic gyro due to Faraday effect: Reduction of the drift in twin-depo-I-FOG", J. Lightw. Technol., vol. 17, pp. 222-228, Feb. 1999.
  16. G. B. Hocker, "Fiber-optic sensing of pressure and temperature", Appl. Opt., vol. 18, pp. 1445-1448, 1979.
  17. L. Fei, Y. Muolin and H. Shanglian, "Distributed fiber optic pressure sensor", in SPIE, Fiber Optic and Laser Sensors VIII, vol. 1367, 1990, pp. 221-224.
  18. H. C. Lefevre, The Fiber Optic Gyroscope, Boston, MA: Artech House, 1993.
  19. K. Hotate, "Fiber optic gyros," in Optical Fiber Sensors , Norwood, MA: Artech House, 1997,vol. IV, pp. 167-206.
  20. B. Szafraniec and G. A. Sanders, "Theory of polarization evolution in interferometric fiber-optic depolarized gyros", J. Lightw. Technol. , vol. 17, pp. 579-590, Apr. 1999.
  21. N. Shibata, M. Tsubokawa, T. Nakashima and S. Seikai, "Temporal coherence properties of a dispersively propagating beam in a fiber-optic interferometer", J. Opt. Soc. Amer. A, vol. 4, pp. 494-497, Mar. 1987.
  22. M. Tsubokawa, N. Shibata, T. Higashi and S. Seikai, "Loss of longitudinal coherence as a result of the birefringence effect", J. Opt. Soc. Amer. A, vol. 4, pp. 1895-1901, Oct. 1987.
  23. N. K. Sinha, "Normalized dispersion of birefringence of quartz and stress-optical coefficient of fused silica and plate glass", Phys. Chem. Glasses, vol. 19, pp. 67-77, 1978.
  24. N. Shibata, M. Tsubokawa and S. Seikai, "Polarization mode dispersion in a coil of single-mode fiber", Opt. Lett., vol. 10, pp. 92-94, Feb. 1985.
  25. M. Born and E. Wolf, Principles of Optics, 5th ed. Oxford: U.K.: Pergamon, 1975, ch. 10.
  26. R. B. Dyott, Elliptical Fiber Waveguides, Boston, MA: Artech House, 1995.
  27. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. New York: Wiley, 2002, ch. 2.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited