OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1302–

Low-Loss Silica-Based Optical Film Waveguides Deposited by Helicon-Activated Reactive Evaporation

Douglas A. P. Bulla, Wei-Tang Li, Christine Charles, Rod Boswell, Adrian Ankiewicz, and John D. Love

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1302- (2005)


View Full Text Article

Acrobat PDF (447 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Planar silica-based optical waveguides have been deposited by a plasma helicon-activated reactive evaporation system, at a low temperature and with reduced hydrogen contamination, on thermally oxidized silicon wafers. The transmission loss of the rib waveguides, formed on the deposited films by etching with hydrofluoric acid, is determined to be lower than 0.1 and 0.7 dB/cm at wavelengths of 1310 and 1510 nm, respectively, for TE polarization. The influence of substrate leakage on propagation loss is determined numerically and compared with experimental results for TE and TM polarizations. The presence of the OH vibrational overtone band in the fabricated waveguides, at a wavelength of around 1385 nm, is discussed in terms of the waveguide structure.

© 2005 IEEE

Citation
Douglas A. P. Bulla, Wei-Tang Li, Christine Charles, Rod Boswell, Adrian Ankiewicz, and John D. Love, "Low-Loss Silica-Based Optical Film Waveguides Deposited by Helicon-Activated Reactive Evaporation," J. Lightwave Technol. 23, 1302- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-3-1302


Sort:  Journal  |  Reset

References

  1. M. R. Poulsen, P. I. Borel, J. F. Pedersen, J. Hubner, K. Kristensen, J. H. Povisen, K. Rottwitt, M. Svalgaard and E. Svendsen, "Advances in silica-based integrated optics", Opt. Eng. , vol. 42, no. 10, pp. 2821-2834, 2003.
  2. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky and L. E. Katz, "Low loss Si3 N4 -SiO2 optical waveguides on Si", Appl. Opt., vol. 26, pp. 2621-2624, 1987.
  3. K. Worhoff, P. V. Lambeck and A. Driessen, "Design, tolerance analysis and fabrication of silicon oxynitride based planar optical waveguides for communication device", J. Lightw. Technol., vol. 17, pp. 1401-1407, 1999.
  4. R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck and H. Albers, "Silicon oxynitride planar waveguiding structures for application in optical communication", IEEE J. Sel. Topics Quantum Electron., vol. 6, pp. 930-937, 1998.
  5. L. Martinu and D. Poitras, "Plasma deposition of optical films and coatings: A review", J. Vac. Sci. Technol. A, vol. 18, pp. 2619-2645, 2000.
  6. Y. T. Kim, S. M. Cho, Y. G. Seo, H. D. Yoon, Y. M. Im and D. H. Yoon, "Influence of hydrogen on SiO2 thick film deposited by PECVD and FHD for silica optical waveguide", Cryst. Res. Technol., vol. 37, no. 12, pp. 1257-1263, 2002.
  7. D. A. P. Bulla, W. T. Li, C. Charles, R. Boswell, A. Ankiewicz and J. Love, "Deposition and characterization of silica-based films by helicon-activated reactive evaporation applied to optical waveguides fabrication", Appl. Opt., vol. 43, no. 14, pp. 2978-2985, 2004.
  8. A. Durandet, R. Boswell and D. McKenzie, "New plasma-assisted deposition technique using helicon activated reactive evaporation", Rev. Sci. Instrum., vol. 66, pp. 2908-2913, 1995.
  9. B. Higgins, A. Durandet and R. Boswell, "Investigation of silicon transport in the neutral background of a plasma activated reactive evaporation system", J. Vac. Sci. Technol. B, vol. 13, pp. 192-197, 1995.
  10. W. T. Li, D. A. P. Bulla, C. Charles, R. Boswell, J. Love and B. Luther-Davies, "Ge-doped SiO2 thin films produced by helicon activated reactive evaporation", Thin Solid Films, vol. 419, pp. 82-87, 2002.
  11. W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles and R. Boswell, "Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation", J. Vac. Sci. Technol. A, vol. 21, pp. 792-796, 2003.
  12. G. G. Matlakowski, C. Charles, A. Durandet, R. W. Boswell, S. Armand, H. M. Persinf, A. J. Perry, P. D. Lloyd, S. R. Hyde and D. Bogsanyi, "Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications", J. Vac. Sci. Technol. A, vol. 12, pp. 2754-2760, 1994.
  13. S. M. Hu, "Stress-related problems in silicon technology", J. Appl. Phys., vol. 70, no. 6, pp. R53-R80, 1991.
  14. A. Durandet and D. R. McKenzie, "Effect of ion energy on the optical and structural properties of SiO2 grown by plasma-enhanced chemical-vapor deposition", J. Appl. Phys., vol. 80, no. 8, pp. 4707-4713, 1996.
  15. A. Durandet, A. Perry, R. Boswell, F. Ladouceur, J. Love, M. Faith, P. Kemeny, X. Ma and M. Austin, "Silica buried channel waveguides fabricated al low temperature using PECVD", Electron. Lett., vol. 32, no. 4, pp. 326-327, 1996.
  16. Enschede The Netherlands:
  17. H. Nishihara, M. Haruna and T. Suhara, Optical Integrated Circuits , New York: McGraw-Hill, 1989, pp. 224-244.
  18. J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim and G. Lucovsky, "Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor", J. Vac. Sci. Technol. A, vol. 8, pp. 1374-1381, 1990.
  19. R. G. Hunsperger, Integrated Optics: Theory and Technology, Berlin: Springer-Verlag, 1985, pp. 71-87.
  20. F. Ladouceur and J. D. Love, Silica-Based Buried Channel Waveguides and Devices, London: U.K.: Chapman and Hall, 1996, pp. 85-109.
  21. C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini and C. De Bernardi, "Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by RF sputtering", J. Non-Crystalline Solids, vol. 284, pp. 230-236, 2001.
  22. C. Gorecki, "Optimization of plasma-deposited silicon oxynitride films for optical channel waveguides", Opt. Laser in Eng., vol. 33, pp. 15-20, 2000.
  23. W. Stutius and W. Streifer, "Silicon nitride films on silicon for optical waveguides", Appl. Opt., vol. 16, pp. 3218 -3222, 1977.
  24. J. Lu, S. He and V. G. Romanov, "Study of the leakage loss in a silica-on-silicon slab waveguide", Fiber and Integrated Opt., vol. 22, no. 4, pp. 249-261, 2003.
  25. M. Hoffmann, P. Kopka and E. Voges, "Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems", IEEE Photon. Technol. Lett., vol. 9, no. 9, pp. 1238 -1240, 1997.
  26. K. Imoto and A. Hori, "High refractive index difference and low loss optical waveguide fabrication by low temperature processes", Electron. Lett., vol. 29, no. 12, pp. 1123-1124, 1993.
  27. H. Ohkubo, A. Hongo, S. Kashimura, M. Ohkawa, K. Ohira, H. Uetsuka and H. Okano, "Japan. J. Appl. Phys.", vol. 42, pp. 4340-4344, 2003.
  28. K. Okamoto, "Recent progress of integrated optics planar lighwave circuits", Opt. Quantum Electron., vol. 31, pp. 107-129, 1999.
  29. J. J. Refi, "Optical fibers for optical networking", Bell Labs. Tech. J., vol. 4, pp. 246-260, 1999.
  30. M. Kawachi, M. Horiguchi, A. Kawana and T. Miyashita, "OH-ion distribution profiles in rod performs of high-silica optical waveguide", Electron. Lett., vol. 13, no. 9, pp. 247-248, 1977.
  31. K. P. Chen, P. R. Herman and R. Tam, "Strong fiber grating fabrication by hybrid 157-and 248-nm laser exposure", IEEE Photon. Technol. Lett., vol. 14, no. 2, pp. 170-172, 2002.
  32. J. A. Theil, D. V. Tsu and G. Lucovsky, "Reaction pathways and sources of OH groups in low temperature remote PECVD silicon dioxide thin films", J. Electron. Mat., vol. 19, no. 3, pp. 209-217, 1990.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited