OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1380–

Experimentally Verified Modeling of Erbium-Ytterbium Co-Doped DFB Fiber Lasers

Kuthan Yelen, Louise M. B. Hickey, and Mikhail N. Zervas

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1380- (2005)


View Full Text Article

Acrobat PDF (640 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

For the first time, the simulation results of fiber distributed feedback (DFB) lasers are compared against experimental data in this paper. The pump source, active medium, and grating are all modeled and simulated to predict actual laser characteristics. Simple characterization methods are illustrated for the measurement of model parameters. Large loss at the pump wavelength is observed, attributed to the lifetime quenching of Yb ions, and included in the model as a critical parameter. DFB lasers with two different apodization profiles successfully simulated with the same set of model parameters.

© 2005 IEEE

Citation
Kuthan Yelen, Louise M. B. Hickey, and Mikhail N. Zervas, "Experimentally Verified Modeling of Erbium-Ytterbium Co-Doped DFB Fiber Lasers," J. Lightwave Technol. 23, 1380- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-3-1380


Sort:  Journal  |  Reset

References

  1. J. Hubner, P. Varming and M. Kristensen, "Five wavelength DFB fiber laser source for WDM systems", Electron. Lett., vol. 33, no. 2, pp. 139-140, 1997.
  2. M. Ibsen, S. U. Alam, M. N. Zervas, A. B. Grudinin and D. N. Payne, "8-and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy", IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1114-1116, Sep. 1999.
  3. H. N. Poulsen, P. Varming, A. Buxens, A. T. Clausen, P. Munoz, P. Jeppesen, C. V. Poulsen, J. E. Pedersen and L. Eskildsen, "1607 nm DFB fiber laser for optical communcation in the L-band", presented at the Eur. Conf. Optical Communications (ECOC), Nice, France,1999.
  4. J. T. Kringlebotn, W. H. Loh and R. I. Laming, "Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements", Opt. Lett., vol. 21, no. 22, pp. 1869-1871, 1996.
  5. E. Ronnekleiv, M. Ibsen and G. J. Cowle, "Polarization characteristics of fiber DFB lasers related to sensing applications", IEEE J. Quantum Electron., vol. 36, no. 6, pp. 656-664, Jun. 2000.
  6. O. Hadeler, M. Ibsen and M. N. Zervas, "Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain", Appl. Opt., vol. 40, no. 19, pp. 3169-3175, 2001.
  7. E. Ronnekleiv, "Frequency and intensity noise of single frequency fiber Bragg grating lasers", Opt. Fiber Technol., vol. 7, no. 3, pp. 206-235, 2001.
  8. L. B. Fu, R. Selvas, M. Ibsen, J. K. Sahu, J. N. Jang, S. U. Alam, J. Nilsson, D. J. Richardson, D. N. Payne, C. Codemard, S. Goncharov, I. Zalevsky and A. B. Grudinin, "Fiber-DFB laser array pumped with a single 1-W CW Yb-fiber laser", IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 655-657, May 2003.
  9. C. Strohhofer and A. Polman, "Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers", J. Appl. Phys., vol. 90, no. 9, pp. 4314-4320, 2001.
  10. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper and D. C. Hanna, "Lifetime quenching in Yb-doped fibers", Optics Commun., vol. 136 375-136 378, 1997.
  11. S. B. Poole, J. E. Townsend, D. N. Payne, M. E. Fermann, G. J. Cowle, R. I. Laming and P. R. Morkel, "Characterization of special fibers and fiber devices", J. Lightw. Technol., vol. 7, no. 8, pp. 1242-1255, Aug. 1989.
  12. G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson and D. N. Payne, "Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for laser", J. Lightw. Technol., vol. 16, no. 11, pp. 1990-2001, Nov. 1998.
  13. G. Sorbello, S. Taccheo and P. Laporta, "Numerical modeling and experimental investigation of double-cladding erbium-ytterbium-doped fiber amplifiers", Optical Quantum Electron., vol. 33 599-33 619, 2001.
  14. E. Yahel and A. Hardy, "Modeling high-power Er3+-Yb3+ codoped fiber lasers", J. Lightw. Technol., vol. 21, no. 9, pp. 2044-2052, Sep. 2003.
  15. E. Yahel and A. Hardy, "Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers", IEEE J. Quantum Electron., vol. 39, no. 11, pp. 1444-1451, Nov. 2003.
  16. M. Karasek, "Optimum design of Er3+-Yb3+ codoped fibers for large-signal high-pump-power applications", IEEE J. Quantum Electron., vol. 33, no. 10, pp. 1699-1705, Oct. 1997.
  17. G. C. Valley, "Modeling cladding-pumped Er/Yb fiber amplifiers", Optical Fiber Technol., vol. 721-44, 2001.
  18. F. Di Pasquale, "Modeling of highly-efficient grating-feedback and Fabry-Pérot Er3+Yb3+ co-doped fiber lasers", IEEE J. Quantum Electron., vol. 32, no. 2, pp. 326-332, Feb. 1996.
  19. J. Nilsson, P. Scheer and B. Jaskorzynska, "Modeling and optimization of short Yb3+ sensitized Er3+ doped fiber amplifiers", IEEE Photon. Technol. Lett., vol. 6, no. 3, pp. 383-385, Mar. 1994.
  20. M. Achtenhagen, R. J. Beeson, F. Pan, B. Nyman and A. Hardy, "Gain and noise in ytterbium-sensitized erbium-doped fiber amplifiers: Measurements and simulations", J. Lightw. Technol., vol. 19, no. 10, pp. 1521-1526, Oct. 2001.
  21. J. Kemtchou, M. Duhamel and P. Lecoy, "Gain temperature dependence of erbium-doped silica and fluoride fiber amplifiers in multichannel wavelength-multiplexed transmission systems", J. Lightw. Technol., vol. 15, no. 11, pp. 2083-2090, Nov. 1997.
  22. Y. Maeda and T. Yamada, "Temperature dependence of the enhanced excited state absorption in erbium-doped garnets", J. Appl. Phys., vol. 83, no. 12, pp. 7436-7441, 1998.
  23. E. Desurvire, C. R. Giles and J. R. Simpson, "Gain saturation effects in high-speed, multichannel Erbium-doped fiber amplifiers at Lambda = 1.53 µ m", J. Lightw. Technol., vol. 7, no. 12, pp. 2095-2104, Dec. 1989.
  24. L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu and L. Reekie, "Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers", Opt. Lett., vol. 22, no. 10, pp. 694-696, 1997.
  25. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos and R. I. Laming, "Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique", Opt. Lett., vol. 20, no. 20, pp. 2051-2053, 1995.
  26. A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles", J. Lightw. Technol., vol. 15, no. 8, pp. 1419-1423, Aug. 1997.
  27. Z. Burshtein, Y. Kalisky, S. Z. Levy, P. Le Boulanger and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses", IEEE J. Quantum Electron., vol. 36, no. 8, pp. 1000 -1007, Aug. 2000.
  28. P. Yang, P. Deng and Z. Yin, "Concentration quenching in Yb:YAG", J. Lumin., no. 97, pp. 51-52, 2002.
  29. E. Desurvire, "Section 4.5 determination of transition cross sections," in Erbium-Doped Fiber Amplifiers: Principles and Applications, New York: Wiley, 1994, pp. 245-270.
  30. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber and J. M. Dawes, "Ytterbium-doped silica fiber lasers: Versatile sources for the 1-1.2 µ m region", IEEE J. Select. Topics Quantum Electron., vol. 1, no. 1, pp. 2-13, Apr. 1995.
  31. X. Zou and H. Toratani, "Evaluation of spectroscopic properties of Yb3+ -doped glasses", Phys. Rev. B, Condens. Matter, vol. 52, no. 22, pp. 15 889-15 897, 1995.
  32. H. Yin, P. Deng, J. Zhang and F. Gan, "Emission properties of Yb3+ in fluorophosphate glass", J. Non-Cryst. Solids, vol. 210 243-210 248, 1997.
  33. W. J. Miniscalco and R. S. Quimby, "General procedure for the analysis of Er3+ cross sections", Opt. Lett., vol. 16, no. 4, pp. 258-260, 1991.
  34. W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm", J. Lightw. Technol., vol. 9, no. 2, pp. 234-250, Feb. 1991.
  35. L. W. Barnes, R. I. Laming, E. J. Tarbox and P. R. Morkel, "Absorption and emission cross section of Er3+ doped silica fibers", IEEE J. Quantum Electron., vol. 27, no. 4, pp. 1004-1010, Apr. 1991.
  36. E. Desurvire, J. L. Zyskind and C. R. Giles, "Design optimization for efficient erbium-doped fiber amplifiers", J. Lightw. Technol., vol. 8, no. 11, pp. 1730-1741, Nov. 1990.
  37. B. J. Ainslie, "A review of the fabrication and properties of erbium-doped fibers for optical amplifiers", J. Lightw. Technol., vol. 9, no. 2, pp. 220-227, Feb. 1991.
  38. E. Maurice, G. Monnom, B. Dussardier and D. B. Ostrowsky, "Clustering effects on double energy transfer in heavily ytterbium-erbium-codoped silica fibers", J. Opt. Soc. Amer. B, Opt. Phys., vol. 13, no. 4, pp. 693-701, 1996.
  39. B. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello and N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er 3+ -and Yb3+ -Er 3+ -doped phosphate glasses", J. Opt. Soc. Amer. B, Opt. Phys., vol. 17, no. 5, pp. 833-838, 2000.
  40. C. Lester, A. Bjarklev, T. Rasmussen and P. G. Dinesen, "Modeling of Yb3+ sensitized Er3+ doped silica waveguide amplifiers", J. Lightw. Technol., vol. 13, no. 5, pp. 740-743, May 1995.
  41. S. Taccheo, G. Sorbello, S. Longhi and P. Laporta, "Measurement of the energy transfer and upconversion constants in Er-Yb-doped phosphate glass", Optical Quantum Electron., vol. 31 249-31 262, 1999.
  42. M. Federighi and F. Di Pasquale, "The effect of pair-induced energy transfer on the performance of Silica waveguide amplifiers with high Er3+ /Yb 3+ concentrations", IEEE Photon. Technol. Lett., vol. 7, no. 3, pp. 303-305, Mar. 1995.
  43. J. Nilsson, P. Blixt, B. Jaskorzynska and J. Babonas, "Evaluation of parasitic upconversion mechanisms in Er3+ -doped Silica-glass fibers by analysis of fluorescence at 980 nm", J. Lightw. Technol., vol. 13, no. 3, pp. 341-349, 1995.
  44. K. Yelen, L. M. B. Hickey and M. N. Zervas, "A new design approach for fiber DFB lasers with improved efficiency", IEEE J. Quantum Electron., vol. 40, no. 6, pp. 711-720, Jun. 2004.
  45. M. Yamada and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach", Appl. Opt., vol. 26, no. 16, pp. 3474-3478, 1987.
  46. Y. Z. Xu, H. Y. Tam, S. Y. Liu and M. S. Demokan, "Pump-induced thermal effects in Er-Yb fiber grating DBR lasers", IEEE Photon. Technol. Lett., vol. 10, no. 9, pp. 1253-1255, Sep. 1998.
  47. K. Yelen, M. N. Zervas and L. M. B. Hickey, "Fiber DFB lasers with ultimate efficiency", presented at the Optical Fiber Communications Conf. (OFC), Los Angeles, CA, 2004.
  48. K. Yelen, M. N. Zervas and L. M. B. Hickey, "Fiber DFB lasers with ultimate efficiency", J. Lightw. Technol., vol. 23, no. 1, pp. 32-43, Jan. 2005.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited