OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1419–

Design and Spectral Characteristics of Multireflector Etalons

Seongmin Yim and Henry F. Taylor

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1419- (2005)

View Full Text Article

Acrobat PDF (389 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A numerical technique for analyzing multireflector optical resonators with an arbitrarily large number of mirrors is applied to the design of ripple-free, flat-top bandpass filters. The algorithm determines unique values for the mirror reflectances Rj, j= 1, ... N, subject to a constraint on a contradirectional coupling strength parameter Z defined as Z= Sum^N j=1 zeta j with zeta j=tanh^-1(sqrt Rj) . The method is applied to the design of resonators with N as high as 12. Transmittance and dispersion spectra are presented for two cases that represent relatively weak and relatively strong contradirectional coupling. These spectra illustrate that, for a fixed -20-dB width of the transmittance spectrum, the -3-dB spectral widths increase monotonically with N, while the central portion of the group refractive-index spectrum becomes flatter and wider as N increases. These designs are compared with those obtained using a Chebyshev formula to determine the mirror reflectances. Application of these multireflector resonators as bandpass filters, slow-wave electrooptic modulators, and nonlinear optical devices are discussed.

© 2005 IEEE

Seongmin Yim and Henry F. Taylor, "Design and Spectral Characteristics of Multireflector Etalons," J. Lightwave Technol. 23, 1419- (2005)

Sort:  Journal  |  Reset


  1. H. F. Taylor, "Design of multireflector resonant bandpass filters for guided wave optics", J. Lightw. Technol., vol. 19, no. 6, pp. 866-871, Jun. 2001.
  2. A. Melloni and M. Martinelli, "Synthesis of direct-coupled-resonators bandpass filters for WDM systems", J. Lightw. Technol., vol. 20, no. 2, pp. 296-303, Feb. 2002.
  3. H. F. Taylor, "Enhanced electrooptic modulation efficiency utilizing slow-wave optical propagation", J. Lightw. Technol., vol. 17, no. 10, pp. 1875-1883, Oct. 1999.
  4. J. B. Khurgin, J. U. Kang and Y. J. Ding, "Ultrabroad-bandwidth electro-optic modulator based on a cascaded Bragg grating", Opt. Lett., vol. 25, pp. 70-72, 2000.
  5. N. Shaw, W. J. Stewart, J. Heaton and D. R. Wright, "Optical slow wave resonant modulation in electrooptic GaAs/AlGaAs modulators", Electron. Lett., vol. 35, pp. 1557-1558, 1999.
  6. A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures", Opt. Quantum Electron. , vol. 35, pp. 365-379, 2003.
  7. T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms, Englewood Cliffs, NJ: Prentice-Hall, 2000, pp. 608-608.
  8. L. E. Sarles, Introduction to Non-Linear Optimization, New York: Springer-Verlag, 1985, ch. 8, 9, 12.
  9. K.-Y. Wu and J.-Y. Liu, "Programmable wavelength router", U.S. Patent 5 867 291, Feb. 2, 1999.
  10. K. Jinguji and M. Oguma, "Optical half-band filters", J. Lightw. Technol., vol. 18, no. 2, pp. 252-259, Feb. 2000.
  11. M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno and Y. Hibino, "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings", IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 328-330, Mar. 2002.
  12. H. van de Stadt and J. M. Muller, "Multimirror Fabry-Pérot interferometers", J. Opt. Soc. Amer. A, vol. 2, pp. 1363-1370, 1985.
  13. J. Stone, L. W. Stulz and A. A. M. Saleh, "Three-mirror fiber Fabry-Pérot filters of optimal design", Electron. Lett., vol. 26, pp. 1073-1074, 1990.
  14. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion and S. B. Poole, "Wide-band Fabry-Perot-like filters in optical fiber", IEEE Photonics Technol. Lett., vol. 7, pp. 78-80, 1995.
  15. S. Li, K. T. Chan, J. Meng and W. Zhou, "Adjustable multi-channel fiber bandpass filters based on uniform fiber Bragg gratings", Electron. Lett., vol. 34, pp. 1517-1519, 1998.
  16. J. U. Kang, X. Xie and J. Khurgin, "Group velocity modified Ti-diffused LiNbO3 waveguides with dual Bragg gratings", Electron. Lett., vol. 38, pp. 1049-1051, 2002.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited