OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1426–

A Hybrid Diffraction Method for the Design of Etched Diffraction Grating Demultiplexers

Zhimin Shi, Jian-Jun He, and Sailing He

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1426- (2005)

View Full Text Article

Acrobat PDF (510 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A novel hybrid diffraction method is proposed to simulate the demultiplexing of an etched diffraction grating (EDG). The scalar diffraction formula is adopted to simulate the propagation of the light field in the free propagation region (FPR), and a rigorous coupled-wave analysis (RCWA) is used to calculate the polarization-dependent diffraction near the grating. The hybrid diffraction method takes the advantages of both the conventional scalar diffraction method and the rigorous coupled-wave analysis and can simulate accurately the imaging property as well as the polarization-dependent efficiency of an EDG demultiplexer. Compared with the conventional scalar diffraction method, the proposed hybrid diffraction method reduces greatly the design error in, for example, the polarization-dependent insertion loss.

© 2005 IEEE

Zhimin Shi, Jian-Jun He, and Sailing He, "A Hybrid Diffraction Method for the Design of Etched Diffraction Grating Demultiplexers," J. Lightwave Technol. 23, 1426- (2005)

Sort:  Journal  |  Reset


  1. M. K. Smit and C. V. Dam, "Phasar-based WDM-devices: Principles, design and applications", IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 2, pp. 236-250, Jun. 1996.
  2. C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus and L. Stall, "Grating spectrograph integrated with photodiode array in InGaAsP/InGaAs/InP", IEEE Photon. Technol. Lett., vol. 4, no. 1, pp. 108-110, Jan. 1992.
  3. J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delâge and M. Davies, "Integrated polarization compensator for WDM waveguide demultiplexers", IEEE Photon. Technol. Lett., vol. 11, no. 2, pp. 224-226, Feb. 1999.
  4. V. I. Tolstikhin, A. Densmore, K. Pimenov, Y. Logvin, F. Wu, S. Laframboise and S. Grabtchak, "Monolithically integrated optical channel monitor for DWDM transmission systems", J. Lightw. Technol., vol. 22, no. 1, pp. 146-153, Jan. 2004.
  5. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson and D.-X. Xu, "Planar waveguide echelle gratings in silica-on-silicon", IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 503-505, Feb. 2004.
  6. M. C. Hutley, Diffraction Gratings, London: U.K.: Academic Press, Inc., Ltd., 1982.
  7. A. C. McGreer, "Diffraction from concave gratings in planar waveguides", IEEE Photon. Technol. Lett., vol. 7, no. 3, pp. 324 -326, Mar. 1995.
  8. J.-J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies and E. S. Koteles, "Sources of crosstalk in grating based monolithic integrated wavelength demultiplexers", in Proc. SPIE, Application of Photonic Technology 3: Closing the Gap Between Theory, Development and Application, vol. 3491, 1998, pp. 593- 598.
  9. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings", J. Opt. Soc. Amer. A, Opt. Image Sci. , vol. 3, no. 11, pp. 1780-1787, Nov. 1986.
  10. M. G. Moharam, D. A. Pommet, E. B. Grann and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach", J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 12, no. 5, pp. 1077-1086, May 1995.
  11. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures", J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 13, no. 9, pp. 1870-1876, Sep. 1996.
  12. P. Lalanne, "Highly improved convergence of the coupled-wave method for TM polarization", J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 13, no. 4, pp. 779-784, Apr. 1996.
  13. R. Marz and C. Cremer, "On the theory of planar spectrographs", J. Lightw. Technol., vol. 10, no. 12, pp. 2017-2022, Dec. 1992.
  14. J.-J. He, B. Lamontagne, A. Delâge, L. Erickson, M. Davies and E. S. Koteles, "Monolithic integrated wavelength demultiplexer based on a waveguide rowland circle grating in InGaAsP/InP", J. Lightw. Technol., vol. 16, no. 4, pp. 631-638, Apr. 1998.
  15. R. G. Hunsperger, Integrated Optics: Theory and Technology, 2nd ed. Berlin: Germany: Springer-Verlag, 1984, p. 89.
  16. K. Okamoto, Foundamental of Optical Waveguides, New York: Academic, 2000, p. 252.
  17. L. Shen and S. He, "Analysis for the convergence problem of the plane-wave expansion method for photonic crystals", J. Opt. Soc. Amer. A, Opt. Image Sci. , vol. 19, no. 5, pp. 1021-1024, May 2002.
  18. P. Vincent, "Differential methods," in Electromagnetic Theory of Gratings, R. Petit, Ed. New York: Springer-Verlag, 1980.
  19. J.-J. He, "Phase-dithered waveguide grating with flat passband and sharp transitions", IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 6, pp. 1186-1193, Nov./Dec. 2002.
  20. Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer", IEEE J. Sel. Topics Quantum Electron. , vol. 8, no. 6, pp. 1179-1185, Nov./Dec. 2002.
  21. L. O. Lierstuen and A. Sv. Sudbo, "Coupling losses between standard single-mode fibers and rectangular waveguides for integrated optics", Applied Optics-LP, vol. 34, no. 6, pp. 1024-1028, Feb. 1995.
  22. R. S. Burton and T. E. Schlesinger, "Comparative analysis of the method-of-lines for three-dimensional curved dielectric waveguides", J. Lightw. Technol. , vol. 14, no. 2, pp. 209-216, Feb. 1996.
  23. E. Loewen, D. Maystre, E. Popov and L. Tsonev, "Echelles: Scalar, electromagnetic and real-groove properties", Appl. Opt., vol. 34, no. 10, pp. 1707-1727, Apr. 1995.
  24. M. Born and E. Wolf, Principles of Optics, Oxford: U.K.: Pergamon, 1965.
  25. H. Haus, Waves and Fields in Optoelectronics, Englewood Cliffs, NJ: Prentice-Hall, 1984, p. 48.
  26. R. Petit, Ed. Electromagnetic Theory of Gratings, New York: Springer-Verlag, 1980, p. 179.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited