OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1456–

Experimental and Theoretical Study of Hyperfine WDM Demultiplexer Performance Using the Virtually Imaged Phased-Array (VIPA)

Shijun Xiao, Andrew M. Weiner, and Christopher Lin

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1456- (2005)


View Full Text Article

Acrobat PDF (571 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We have developed a Fresnel diffraction analysis that provides an analytic expression for the passband response of virtually imaged phased-array (VIPA) demultiplexers. Our analysis shows that although the passband can be inherently symmetric, a strong asymmetry can develop when the output plane is detuned longitudinally. The symmetric passband has the minimum -3 dB transmission bandwidth. We also identify a spatial chirp effect that arises when the passband becomes asymmetric. Our theoretical predictions are confirmed via experiment. The experimental results include a demonstration of a hyperfine wavelength demultiplexing response with 10 pm (1.25 GHz) -3 dB transmission bandwidth.

© 2005 IEEE

Citation
Shijun Xiao, Andrew M. Weiner, and Christopher Lin, "Experimental and Theoretical Study of Hyperfine WDM Demultiplexer Performance Using the Virtually Imaged Phased-Array (VIPA)," J. Lightwave Technol. 23, 1456- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-3-1456


Sort:  Journal  |  Reset

References

  1. K. Takada, M. Abe, T. Shibata and K. Okamoto, "10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs", IEEE Photon. Technol. Lett., vol. 13, no. 6, pp. 577-578, 2001.
  2. M. Shirasaki, "Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer", Opt. Lett., vol. 21, pp. 366-368, 1996.
  3. M. Shirasaki, A. N. Akhter and C. Lin, "Virtually imaged phased array with graded reflectivity", IEEE Photon. Technol. Lett., vol. 11, pp. 1443-1445, 1999.
  4. M. Shirasaki, "Chromatic-dispersion compensator using virtually imaged phased array", IEEE Photon. Technol. Lett., vol. 9, pp. 1598-1560, 1997.
  5. M. Shirasaki, "Compensation of chromatic dispersion and dispersion slope using a virtually imaged phased array", in Opt. Fiber Commun. Conf. TuS1-3, 2001.
  6. M. Shirasaki, "Virtually imaged phased array (VIPA) having air between reflecting surfaces", Patent 5 969 866, Oct. 19, 1999.
  7. M. Shirasaki, "Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion", Pub. US 20030021046, Jan. 30, 2003.
  8. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles and P. J. Delfyett, "Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser", IEEE Photon. Technol. Lett., vol. 14, no. 11, pp. 1608-1610, 2002.
  9. M. Currie, F. K. Fatemi and J. W. Lou, "Increasing laser repetition rate by spectral elimination", in CThPDA8, Conf. Laser and Electro Optics, Baltimore, MD, Jun. 1-6 2003.
  10. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators", Rev. Sci. Instrum., vol. 71, no. 5, pp. 1929-1960, 2000.
  11. D. E. Leaird and A. M. Weiner, "Femtosecond direct space-to-time pulse shaping", IEEE J. Quantum Electron., vol. 37, no. 4, pp. 494-504, 2001.
  12. S. Xiao, J. D. McKinney and A. M. Weiner, "Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper", IEEE Photon. Technol. Lett., vol. 16, pp. 1936-1938, 2004.
  13. S. Xiao, A. M. Weiner and C. Lin, "Demultiplexers with 10 pm (1.25 GHz) -3 dB transmission bandwidth using a virtually imaged phased array (VIPA)", in TuL1, Optical Fiber Commun. Conf., Los Angeles, CA, Feb. 22-27 2004.
  14. A. Vega, A. M. Weiner and C. Lin, "Generalized grating equation for virtually-imaged phased-array spectral dispersers", Appl. Opt., vol. 42, pp. 4152-4155, 2003.
  15. M. C. Parker and S. D. Walker, "Design of AWG's using hybrid Fourier-Fresnel transform techniques", in J. Sel. Topics Quantum Electron., vol. 6, 1999, pp. 1379-1384.
  16. M. C. Parker and S. D. Walker, "A Fourier-Fresnel integral-based transfer function model for a near-parabolic phase-profile arrayed-waveguide grating", IEEE Photon. Technol. Lett., vol. 11, pp. 1018 -1020, 1999.
  17. O. Lummer and E. Gehrcke, "Ann. D. Physik", vol. 10, pp. 457-477, 1903.
  18. M. Born and E. Wolf, Principles of Optics, Cambridge: U.K.: Cambridge University, 1999, pp. 359-386.
  19. S. Xiao, A. M. Weiner and C. Lin, "A dispersion law for virtually-imaged phased-array based on paraxial wave theory", IEEE J. Quantum Electron., vol. 40, no. 4, pp. 420-426, 2004.
  20. S. Xiao, A. M. Weiner and C. Lin, "Spatial chirp effect in virtually-imaged phased-array wavelength demultiplexers", in CWP6, Conf. Lasers Electro Opt., Baltimore, MD, Jun. 1-6 2003.
  21. J. W. Goodman, Introduction to Fourier Optics, San Francisco, CA: McGraw-Hill, 1968, pp. 77-96.
  22. H. A. Haus, Waves and Fields in Optoelectronics, Englewood Cliffs, NJ: Prentice-Hall, 1984, pp. 81-107.
  23. L. Yang, "Analytical treatment of virtual image phase array", in WS3, Optical Fiber Commun. Conf., Anaheim, CA, Mar. 17-22 2002.
  24. D. Marcuse, "Gaussian approximation of the fundamental modes of graded-index fibers", J. Opt. Soc. Amer., vol. 68, pp. 103-109, 1978.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited