OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1478–

A Receiver Model for Optical Fiber Communication Systems With Arbitrarily Polarized Noise

Ivan T. Lima, Jr., Aurenice O. Lima, Yu Sun, Hua Jiao, John Zweck, Curtis R. Menyuk, and Gary M. Carter

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1478- (2005)


View Full Text Article

Acrobat PDF (389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The authors have derived a receiver model that provides an explicit relationship between the Q factor and the optical signal-to-noise ratio (OSNR) in optical fiber communication systems for arbitrary pulse shapes, realistic receiver filters, and arbitrarily polarized noise. It is shown how the system performance depends on both the degree of polarization of the noise and the angle between the Stokes' vectors of the signal and the noise. The results demonstrate that the relationship between the OSNR and the Q factor is not unique when the noise is partially polarized. This paper defines the enhancement factor and three other parameters that explicitly quantify the relative performance of different modulation formats in a receiver. The theoretical and experimental results show that the performance of the return-to-zero format is less sensitive to variations in the receiver characteristics than is the performance of the nonreturn-to-zero format. Finally, a validation of the formula is presented for computing the Q factor from the OSNR and the Stokes vectors of the signal and the noise by comparison with both experiments and Monte Carlo simulations.

© 2005 IEEE

Citation
Ivan T. Lima, Jr., Aurenice O. Lima, Yu Sun, Hua Jiao, John Zweck, Curtis R. Menyuk, and Gary M. Carter, "A Receiver Model for Optical Fiber Communication Systems With Arbitrarily Polarized Noise," J. Lightwave Technol. 23, 1478- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-3-1478


Sort:  Journal  |  Reset

References

  1. D. Marcuse, "Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers", J. Lightw. Technol., vol. 8, no. 12, pp. 1816-1823, Dec. 1990.
  2. I. P. Kaminow and I. L. Koch, Optical Fiber Telecommunications, San Diego, CA: Academic, 1997,vol. III-B.
  3. I. P. Kaminow and T. Li, Optical Fiber Telecommunications, San Diego, CA: Academic, 2002,vol. IV-B.
  4. P. A. Humblet and M. Azizoglu, "On the bit error rate of lightwave systems with optical amplifiers", J. Lightw. Technol., vol. 9, no. 11, pp. 1576-1582, Nov. 1991.
  5. N. S. Bergano, F. W. Kerfoot and C. R. Davidson, "Margin measurements in optical amplifier systems", IEEE Photon. Technol. Lett., vol. 5, no. 3, pp. 304-306, Mar. 1993.
  6. E. Golovchenko, "The challenges of designing long-haul WDM systems", presented at the Tutorial Sessions Optical Fiber Communication Conf. (OFC 2002), Paper TuL, 2002.
  7. P. J. Winzer, M. Pfennigbauer, M. M. Strasser and W. R. Leeb, "Optimum filter bandwidth for optically preamplified NRZ receivers", J. Lightw. Technol., vol. 19, no. 9, pp. 1263-1273, Sep. 2001.
  8. I. T. Lima Jr., A. O. Lima, J. Zweck and C. R. Menyuk, "Performance characterization of chirped return-to-zero modulation format using an accurate receiver model", IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 608-610, Apr. 2003.
  9. J. L. Rebola and A. V. T. Cartaxo, "Power penalty assessment in optically preamplified receivers with arbitrary optical filtering and signal-dependent noise dominance", J. Lightw. Technol., vol. 20, no. 3, pp. 401-408, Mar. 2002.
  10. J. L. Rebola and A. V. T. Cartaxo, "Q -factor estimation and impact of spontaneous-spontaneous beat noise on the performance of optically preamplified systems with arbitrary optical filtering", J. Lightw. Technol., vol. 21, no. 1, pp. 87-95, Jan. 2003.
  11. E. Lichtman, "Limitations imposed by polarization-dependent gain and loss on all-optical ultralong communication systems", J. Lightw. Technol., vol. 13, no. 5, pp. 906-913, May 1995.
  12. A. Mecozzi and M. Shtaif, "The statistics of polarization-dependent loss in optical communication systems", IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 313-315, Mar. 2002.
  13. P. Lu, S. Mihailov, L. Chen and X. Bao, "Importance sampling for the combination of polarization mode dispersion and polarization dependent loss", in Proc. Optical Fiber Communication Conf. (OFC 2003), vol. 1, 2003, pp. 5-6.
  14. B. Huttner, C. Geiser and N. Gisin, "Polarization-induced distortions in optical fiber networks with polarization-mode dispersion and polarization-dependent losses", IEEE J. Select. Topics Quantum Electron., vol. 6, no. 2, pp. 317-329, Mar.-Apr. 2000.
  15. D. Wang and C. R. Menyuk, "Calculation of penalties due to polarization effects in a long-haul WDM system using a stokes parameter model", J. Lightw. Technol., vol. 19, no. 4, pp. 487-494, Apr. 2001.
  16. I. T. Lima Jr., "Investigation of the performance degradation due to polarization effects in optical fiber communications systems", Ph.D. dissertation, Dept. Comp. Sci. Elect. Eng., Univ. Maryland Baltimore County, Baltimore, MD, Dec. 2003.
  17. Y. Sun, A. O. Lima, I. T. Lima Jr., J. Zweck, L. Yan, C. R. Menyuk and G. M. Carter, "Statistics of the system performance in scrambled recirculating loop with PDL and PDG", IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1067-1069, Aug. 2003.
  18. I. T. Lima Jr., A. O. Lima, J. Zweck and C. R. Menyuk, "Efficient computation of outage probabilities due to polarization effects in a WDM system using a reduced stokes model and importance sampling", IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 45-47, Jan. 2003.
  19. C. J. Anderson and J. A. Lyle, "Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference", Electron. Lett., vol. 30, no. 1, pp. 71-72, 1994.
  20. R. Holzlöhner, C. R. Menyuk, V. S. Grigoryan and W. L. Kath, "Accurate calculation of eye diagrams and error rates in long-haul transmission systems using linearization", J. Lightw. Technol., vol. 20, no. 3, pp. 389-400, Mar. 2002.
  21. R. Holzlöhner, C. R. Menyuk, W. L. Kath and V. S. Grigoryan, "Efficient and accurate calculation of eye diagrams and bit-error rates in a single-channel CRZ system", IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1079-1081, Aug. 2002.
  22. L. Kazovsky, S. Benedetto and A. Willner, Optical Fiber Communication Systems, Norwood, MA: Artech House, 1996.
  23. E. Desurvire, Erbium Doped Fiber Amplifiers, New York, NY: Wiley, 1994.
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, New York: Wiley, 1991.
  25. M. Born and E. Wolf, Principles of Optics , Cambridge: U.K.: Cambridge Univ. Press, 1999.
  26. P. R. Trischitta and E. L. Varma, Jitter in Digital Transmission Systems, Boston, MA: Artech House, 1989.
  27. S. Norimatsu and M. Maruoka, "Accurate Q -factor estimation of optically amplified systems in the presence of waveform distortions", J. Lightw. Technol., vol. 20, no. 1, pp. 19-27, Jan. 2002.
  28. I. P. Kaminow and I. L. Koch, Optical Fiber Telecommunications, San Diego, CA: Academic, 1997,vol. III-A.
  29. R. E. Walpole and R. H. Myers, Probability and Statistics for Engineers and Scientists, New York, NY: Macmillan, 1993.
  30. H. Jiao, I. T. LimaJr., A. O. Lima, Y. Sun, J. Zweck, L. Yan, C. R. Menyuk and G. M. Carter, "Experimental validation of an accurate receiver model for systems with unpolarized noise", in Proc. Conf. Lasers and Electro-Optics (CLEO), Baltimore, MD, Jun. 1-6 2003,paper CThJ1.
  31. Y. Sun, I. T. Lima Jr., A. O. Lima, H. Jiao, J. Zweck, L. Yan, C. R. Menyuk and G. M. Carter, "System performance variations due to partially polarized noise in a receiver", IEEE Photon. Technol. Lett., vol. 15, no. 11, pp. 1648-1650, Nov. 2003.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited