OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1514–

Finite-Element Analysis of Photonic Crystal Cavities: Time and Frequency Domains

Vitaly Félix Rodríguez-Esquerre, Masanori Koshiba, and Hugo E. Hernández-Figueroa

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1514- (2005)


View Full Text Article

Acrobat PDF (1009 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Finite-element analysis in time and frequency domains using perfectly matched layers and isoparametric curvilinear elements for finite-size photonic-crystal (PC) cavities is presented in this paper. The time-domain approach includes current sources, the full band scheme, and the slowly varying envelope approximation; consequently, bigger time steps can be used independent of the size of the elements. The resonant frequency, quality factor, effective modal area, and field distribution for each mode can be obtained in a single simulation. A strategy to compute the higher resonant modes by using only a quarter of the cavity and adequate boundary conditions is also presented.

© 2005 IEEE

Citation
Vitaly Félix Rodríguez-Esquerre, Masanori Koshiba, and Hugo E. Hernández-Figueroa, "Finite-Element Analysis of Photonic Crystal Cavities: Time and Frequency Domains," J. Lightwave Technol. 23, 1514- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-3-1514


Sort:  Journal  |  Reset

References

  1. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton, NJ: Princeton Univ. Press, 1995, ch. 7.
  2. K. Sakoda, Optical Properties of Photonic Crystals, New York: Springer-Verlag, 2001, ch. 6.
  3. "Photonic Crystal", IEEE J. Quantum Electron , vol. 38, pp. 724-963, Jul. 2002.
  4. K. Sakoda, "Numerical study on localized defect modes in two-dimensional triangular photonic crystals", J. Appl. Phys., vol. 84, pp. 1210-1214, Aug. 1998.
  5. J. K. Hwang, S. B. Hyun, H. Y. Ryu and Y. H. Lee, "Resonant modes of two-dimensional photonic bandgap cavities determined by the finite-element method and by use of the anisotropic perfectly matched layer boundary condition", J. Opt. Soc. Amer. B, Opt. Phys., vol. 15, pp. 2316-2324, Aug. 1998.
  6. J. Huh, J. K. Hwang, H. Y. Ryu and Y. H. Lee, "Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity", J. Appl. Phys., vol. 92, pp. 654-659, Jul. 2002.
  7. M. Marrone, V. F. Rodriguez-Esquerre and H. E. Hernandez-Figueroa, "Novel numerical method for the analysis of 2D photonic crystals: The cell method", Opt. Express, vol. 10, pp. 1299-1304, Nov. 2002.
  8. D. C. Dibben and R. Metaxas, "Frequency domain vs. time domain finite element methods for calculation of fields in multimode cavities", IEEE Trans. Magn., vol. 33, no. 2, pp. 1468-1471, Mar. 1997.
  9. M. Koshiba, Y. Tsuji and M. Hikari, "Time-domain beam propagation method and its application to photonic crystal circuit components", J. Lightw. Technol. , vol. 18, no. 1, pp. 102-110, Jan. 2000.
  10. V. F. Rodríguez-Esquerre and H. E. Hernández-Figueroa, "Novel time-domain step-by-step scheme for integrated optical applications", IEEE Photon. Technol. Lett., vol. 13, no. 4, pp. 311 -313, Apr. 2001.
  11. A. Cucinotta, S. Selleri, L. Vincetti and M. Zooboli, "Impact of the cell geometry on the spectral properties of photonic crystal structures", Appl. Phys. B, Photophys. Laser Chem. , vol. 73, pp. 595-600, Oct. 2001.
  12. A. Niiyama, M. Koshiba and Y. Tsuji, "An efficient scalar finite element formulation for nonlinear optical channel waveguides", J. Lightw. Technol., vol. 13, no. 9, pp. 1919-1925, Sep. 1995.
  13. G. R. Cowper, "Gaussian quadrature formulas for triangles", Int. J. Numer. Methods Eng., vol. 7, pp. 405 -408, 1973.
  14. N. M. Newmark, "A method of computation for structural dynamics", J. Eng. Mechan. Divis., ASCE, vol. 85, pp. 67 -94, July 1959.
  15. B. N. Parlet, The Symmetric Eigenvalue Problem, Englewood Cliffs, NJ: Prentice-Hall, 1990.
  16. M. R. Watts, S. G. Johnson, H. A. Haus and J. D. Joannopoulos, "Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap", Opt. Lett., vol. 27, pp. 1785-1787, Oct. 2002.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited