OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1533–

Eigenmode Analysis of a Light-Guiding Metal Line Loaded on a Dielectric Substrate Using the Imaginary-Distance Beam-Propagation Method

Jun Shibayama, Tomohide Yamazaki, Junji Yamauchi, and Hisamatsu Nakano

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1533- (2005)

View Full Text Article

Acrobat PDF (428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Fundamental characteristics of a light-guiding metal line are revealed and discussed through the eigenmode analysis using the three-dimensional (3-D) imaginary-distance beam-propagation method (ID-BPM) based on the alternating-direction implicit scheme. For the present ID-BPM, the multiplication factor of the eigenmode is derived and the paper described how the present method works in the ID procedure. An efficient absorbing boundary condition is described,which is suitable for the eigenmode analysis using the ID-BPM. After confirming the effectiveness of the present method, the characteristics of the light-guiding line composed of a metal (Au) with a finite width and thickness on a substrate (SiO2) are investigated. Numerical results for a metal thickness of 0.2 µm show that the effective index and the propagation loss decrease as the metal width is reduced. It is shown that not only the higher order modes but also the first mode has a cutoff metal width. Near the cutoff width, the propagation loss of the first mode (~ or = 10 dB/mm at a wavelength of 1.55 µm) is less than those of the higher order modes. Finally, in order to reduce the propagation loss, a dielectric core was added under the metal line.

© 2005 IEEE

Jun Shibayama, Tomohide Yamazaki, Junji Yamauchi, and Hisamatsu Nakano, "Eigenmode Analysis of a Light-Guiding Metal Line Loaded on a Dielectric Substrate Using the Imaginary-Distance Beam-Propagation Method," J. Lightwave Technol. 23, 1533- (2005)

Sort:  Journal  |  Reset


  1. R. Charbonneau, P. Berini, E. Berolo and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width", Opt. Lett., vol. 25, no. 11, pp. 844-846, 2000.
  2. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures", Phys. Rev. B, Condens. Matter, vol. 61, no. 15, pp. 10 484-10 503, 2000.
  3. S. J. Al-Bader, "Optical transmission on metallic wires-fundamental modes", IEEE J. Quantum Electron., vol. 40, no. 3, pp. 325-329, Mar. 2004.
  4. Y. Katagiri, Y. Nakano, I. Kobayashi, Y. Mitsuoka, H. Shinojima, H. Fukuda and T. Goto, "Propagation characteristics of surface-plasmon polariton waves along two-dimensional metal patterns", in Contemporary Photonics Technology 2002, Conf. Proc., vol. E-30, Tokyo, Japan, 2002, pp. 119-120.
  5. H. Fukuda, H. Shinojima, T. Goto and Y. Katagiri, "The analysis of surface plasmon polariton waves using FDTD method", in Proc. IEICE Soc. Conf. , vol. C-3-74, 2002, pp. 174-174.
  6. R. Scarmozzino, A. Gopinath, R. Pregla and S. Helfert, "Numerical techniques for modeling guided-wave photonics devices", IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 150-162, Jan.-Feb. 2000.
  7. D. Yevick and W. Bardyszewski, "Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis", Opt. Lett., vol. 17, no. 5, pp. 329-330, 1992.
  8. C. L. Xu, W. P. Huang and S. K. Chaudhuri, "Efficient and accurate vector mode calculations by beam propagation method", J. Lightw. Technol., vol. 11, no. 7, pp. 1209-1215, Jul. 1993.
  9. J. C. Chen and S. Jüngling, "Computation of higher-order waveguide modes by the imaginary-distance beam propagation method", Opt. Quantum Electron., vol. 29, no. 3, pp. S199-S205, 1994.
  10. J. Shibayama, M. Sekiguchi, J. Yamauchi and H. Nakano, "Eigenmode analysis of optical waveguides by an improved finite-difference imaginary-distance beam propagation method", Electron. Comm. in Japan, vol. 81, no. 4, pp. 1-9, 1998.
  11. S. Jüngling and J. C. Chen, "Imaginary-distance beam propagation for passive and active waveguide structures", presented at the Progress in Electromagnetic Research Symposium, Seattle, WA, Jul. 24-28, 1995.
  12. Y. Tsuji and M. Koshiba, "Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme", J. Lightw. Technol., vol. 18, no. 4, pp. 618-623, Apr. 2000.
  13. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers", IEEE J. Quantum Electron., vol. 38, no. 7, pp. 927-933, Jul. 2002.
  14. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan and H. A. El-Mikati, "Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides", J. Lightw. Technol., vol. 20, no. 6, pp. 1054-1059, Jun. 2002.
  15. W. P. Huang, C. L. Xu, W. Lui and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method", IEEE Photon. Technol. Lett., vol. 8, no. 5, pp. 649 -651, May 1996.
  16. D. Yevick, J. Yu and F. Schmidt, "Analytic studies of absorbing and impedance-matched boundary layers", IEEE Photon. Technol. Lett., vol. 9, no. 1, pp. 73 -75, Jan. 1997.
  17. J. J. Burke, G. I. Stageman and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films", Phys. Rev. B, Condens. Matter, vol. 33, no. 8, pp. 5186-5201, 1986.
  18. J. Yamauchi, Propagating Beam Analysis of Optical Waveguides, Baldock, Hertfordshire: U.K.: Research Studies Press, 2003.
  19. J. Shibayama, A. Yamahira, T. Mugita, J. Yamauchi and H. Nakano, "A finite-difference time-domain beam-propagation method for TE-and TM-wave analyses", J. Lightw. Technol., vol. 21, no. 7, pp. 1709-1715, Jul. 2003.
  20. S. M. Lee, "Finite-difference vectorial-beam-propagation method using Yee's discretization scheme for modal fields", J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 13, no. 7, pp. 1369-1377, 1996.
  21. T. Ando, H. Nakayama, S. Numata, J. Yamauchi and H. Nakano, "Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface", J. Lightw. Technol., vol. 20, no. 8, pp. 1627-1634, Aug. 2002.
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared", Appl. Opt., vol. 22, no. 7, pp. 1099-1119, 1983.
  23. M. Rajarajan, C. Themistos, B. M. A. Rahaman and K. T. V. Grattan, "Characterization of metal-clad TE/TM mode splitters using the finite element method", J. Lightw. Technol., vol. 15, no. 12, pp. 2264-2269, Dec. 1997.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited