OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 994–

An Optical Packet Switch Based on WDM Technologies

Fow-Sen Choa, X. Zhao, Xiuqin Yu, J. Lin, J. P. Zhang, Y. Gu, G. Ru, Guansong Zhang, Longjun Li, Huiping Xiang, Haldun Hadimioglu, and H. Jonathan Chao

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 994- (2005)


View Full Text Article

Acrobat PDF (6045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Dense wavelength-division multiplexing (DWDM) technology offers tremendous transmission capacity in optical fiber communications. However,switching and routing capacity lags behind the transmission capacity, since most of today's packet switches and routers are implemented using slower electronic components. Optical packet switches are one of the potential candidates to improve switching capacity to be comparable with optical transmission capacity. In this paper, we present an optically transparent asynchronous transfer mode (OPATM) switch that consists of a photonic front-end processor and a WDM switching fabric. A WDM loop memory is deployed as a multiported shared memory in the switching fabric. The photonic front-end processor performs the cell delineation,VPI/VCI overwriting, and cell synchronization functions in the optical domain under the control of electronic signals. The WDM switching fabric stores and forwards cells from each input port to one or more specific output ports determined by the electronic route controller. We have demonstrated with experiments the functions and capabilities of the front-end processor and the switching fabric at the header-processing rate of 2.5 Gb/s. Other than ATM, the switching architecture can be easily modified to apply to other types of fixed-length payload formats with different bit rates. Using this kind of photonic switch to route information, an optical network has the advantages of bit rate, wavelength,and signal-format transparencies. Within the transparency distance, the network is capable of handling a widely heterogeneous mix of traffic, including even analog signals.

© 2005 IEEE

Citation
Fow-Sen Choa, X. Zhao, Xiuqin Yu, J. Lin, J. P. Zhang, Y. Gu, G. Ru, Guansong Zhang, Longjun Li, Huiping Xiang, Haldun Hadimioglu, and H. Jonathan Chao, "An Optical Packet Switch Based on WDM Technologies," J. Lightwave Technol. 23, 994- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-3-994

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited