OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 4 — Apr. 1, 2005
  • pp: 1704–

Dynamics of All-Optical Clock Recovery Using Two-Section Index- and Gain-Coupled DFB Lasers

Inwoong Kim, Cheolhwan Kim, Patrick L. LiKamWa, and Guifang Li

Journal of Lightwave Technology, Vol. 23, Issue 4, pp. 1704- (2005)


View Full Text Article

Acrobat PDF (710 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The dynamics of coherent clock recovery (CR) using self-pulsing two-section distributed feedback (TS-DFB) lasers have been investigated. Both simulation and experimental results indicate fast lockup and walk-off of the clock-recovery process on the order of nanoseconds. Phase stability of the recovered clock from a pseudorandom bit sequence (PRBS) signal can be achieved by limiting the detuning between the frequency of free-running self-pulsation and the input bit rate. The simulation results show that all-optical clock recovery using TS-DFB lasers can maintain a better than 5% clock phase stability for large variations in power, bit rate, and optical carrier frequency of the input data and therefore is suitable for applications in optical packet switching.

© 2005 IEEE

Citation
Inwoong Kim, Cheolhwan Kim, Patrick L. LiKamWa, and Guifang Li, "Dynamics of All-Optical Clock Recovery Using Two-Section Index- and Gain-Coupled DFB Lasers," J. Lightwave Technol. 23, 1704- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-4-1704


Sort:  Journal  |  Reset

References

  1. A. Miras-Legros, E. Legros, L. Giraudet, G. Wanlin, S. Vuye and C. Joly, "Very high gain, high sensitivity, 40 GHz narrow-band photo-receiver for clock recovery", Electron. Lett., vol. 34, no. 3, pp. 297-299, 1998.
  2. K. Murata and Y. Yamane, "40 Gbit/s fully monolithic clock recovery IC using InAlAs/InGaAs/InP HEMTs", Electron. Lett., vol. 36, no. 19, pp. 1617-1618, 2000 .
  3. W. Mao, Y. Li, M. Al-Mumin and G. Li, "All-optical clock recovery from RZ-format data by using a two-section gain-coupled DFB laser", J. Lightw. Technol., vol. 20, no. 9, pp. 1705-1714, Sep. 2002.
  4. W. Mao, X. Wang, M. Al-Munin and G. Li, "40 Gb/s all-optical clock recovery using three section self-pulsation DFB lasers", in Proc. Optical Fiber Communications Conf. (OFC 2000),, pp. 79-80.
  5. W. Mao and G. Li, "Ultrafast wavelength and polarization insensitive all-optical clock recovery", in Optical Fiber Communications Conf. (OFC) , Anaheim, CA, 2001.
  6. W. Mao, Y. Li, M. Al-Mumin and G. Li, "40 Gbit/s all-optical clock recovery using two-section gain-coupled DFB laser and semiconductor optical amplifier", Electron. Lett., vol. 37, no. 21, pp. 1302-1303, 2001.
  7. Y. Li and G. Li, "80 Gbit/s all-optical clock recovery using two-sectin gain-coupled DFB laser", Electron. Lett., vol. 38, no. 15, pp. 892-893, 2002.
  8. G. Li, Y. Li and W. Mao, "All-optical clock recovery using self-pulsing two-section gain-coupled DFB lasers", in IEEE/LEOS Summer Topicals 2002,, pp. TuO2-31-TuO2-32.
  9. B. Sartorius, S. Bauer, C. Bornoldt, M. Möhrle, H.-P. Nolting and J. Slovak, "All-optical clock recovery for signal processing and regeneration", in IEEE/LEOS Summer Topicals 2002,, pp. TuO1-29-TuO1-30.
  10. W. Mao, Y. Li, M. Al-Mumin and G. Li, "All-optical clock recovery for both RZ and NRZ data", IEEE Photon. Technol. Lett., vol. 14, no. 6, pp. 873-875, Jun. 2002.
  11. Y. Li, C. Kim, G. Li, Y. Kaneko, R. L. Jungerman and O. Buccafusca, "Wavelength and polarization insensitive all-optical clock recovery from 96-Gb/s data by using a two-section gain-coupled DFB laser", IEEE. Photon. Technol. Lett., vol. 15, no. 4, pp. 590-592, Apr. 2003.
  12. M. W. Chbat, P. A. Perrier and P. R. Prucnal, "Optical clock recovery demonstration using periodic oscillations of a hybrid electrooptic bistable system", IEEE Photon. Tehnol. Lett., vol. 3, no. 1, pp. 65-67, Jan. 1991.
  13. X. S. Yao and G. Lutes, "A high-speed photonic clock and carrier recovery device", IEEE Photon. Tehnol. Lett., vol. 8, no. 5, pp. 688-690, May 1996.
  14. X. Wang and G. Li, "Spatiotemporal dynamics and high-frequency self-pulsations in two-section distributed feedback lasers", J. Opt. Soc. Amer. B, vol. 16, no. 11, pp. 2030-2039, 1999 .
  15. X. Wang, W. Mao, M. Al-Mumin, S. A. Pappert, J. Hong and G. Li, "Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers", IEEE. Photon. Technol. Lett., vol. 11, no. 10, pp. 1292 -1294, Oct. 1999.
  16. M. Al-Mumin, X. Wang, W. Mao, S. A. Papper and G. Li, "Optical generation and sideband injection locking of tunable 11-120 GHz microwave/millimeter signals", Electron. Lett., vol. 36, no. 18, pp. 1547-1548, 2000.
  17. Y. M. Mohrle, C. Bornholdt, O. Brox, S. Bauer and B. Sartorius, "Multi-section DFB lasers for high speed signal processing/regeneration", in Proc. Optical Fiber Communications Conf. (OFC 2002),, pp. 136-138.
  18. B. Sartorius, M. Mohrle and U. Feiste, "12-64 GHz continuous frequency tuning in self-pulsation 1.55-µ m multiquantum-well DFB lasers", IEEE J. Sel. Topics Quantum Electron., vol. 1, no. 2, pp. 535-538, Jun. 1995.
  19. L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model", IEEE J. Quantum Electron., vol. 30, no. 6, pp. 1389-1395, Jun. 1994.
  20. H. Wenzel and U. Bandelow, "Self pulsations by mode degeneracy in two-section DFB lasers", in Proc. SPIE, vol. 2399, 1995, pp. 195- 206.
  21. W. Mao, "High speed all-optical clock recovery and 3r regeneration", Ph.D. dissertation, College of Engineering, Univ. of Central Florida, Orlando, FL, 2001. .
  22. C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion", Electron. Lett., to be published.
  23. K. Sato, S. Kuwahara, Y. Miyamoto, K. Murata and H. Miyazawa, "Mode-locked lasers for 43-Gb/s carrier-suppressed return-to-zero pulse generation", in Proc. Eur. Conf. Optical Communication (ECOC 2001), Amsterdam, Netherlands, 2001, pp. 340-341.
  24. R. Lang, "Injection locking properties of a semiconductor laser", IEEE J. Quantum Electron., vol. 18, no. 6, pp. 976-983, Jun. 1982.
  25. F. Mogensen, H. Olesen and a. G. Jacobsen, "Locking conditions and stability properties for a semiconductor laser with external light injection", IEEE J. Quantum Electron., vol. 21, no. 7, pp. 784-793, Jul. 1985.
  26. I. Petitbon, P. Gallion, G. Debarge and C. Chabran, "Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser", IEEE J. Quantum Electron., vol. 24, no. 2, pp. 148-154, Feb. 1988.
  27. R. Hui, "Optical PSK modulation using injection-locked DFB semiconductor lasers", IEEE Phonton. Technol. Lett., vol. 2, no. 10, pp. 743-746, Oct. 1990.
  28. A. Vizzino, M. Gioannini and I. Montrosset, "Dynamic simulation of clock recovery with self-pulsating three-section DFB lasers", IEEE J. Quantum Electron., vol. 38, no. 12, pp. 1580 -1586, Dec. 2002.
  29. H. Urkowitz, Signal Theory and Random Processes, Norwood, MA: Artech House, 1983, pp. 65-76.
  30. P. Rees, P. McEvoy, A. Valle, J. O'Gorman, S. Lynch, P. Landais, L. Pesquera and J. Hegarty, "A theoretical analysis of optical clock extraction using a self-pulsating laser diode", IEEE J. Quantum Electron., vol. 35, no. 2, pp. 221-227, Feb. 1999.
  31. C. A. Eldering, F. Herrerias-Martin, R. Martin-Gomez and P. J. Garcia-Arribas, "Digital burst mode clock recovery technique for fiber-optic systems", J. Lightw. Tehnol., vol. 12, no. 2, pp. 271-279, Feb. 1994.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited