OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 4 — Apr. 1, 2005
  • pp: 1721–

Investigation of Phase-Modulator-Based All-Optical Bandpass Microwave Filter

Fei Zeng and Jianping Yao

Journal of Lightwave Technology, Vol. 23, Issue 4, pp. 1721- (2005)


View Full Text Article

Acrobat PDF (397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Theoretical analysis and experimental implementation of an all-optical bandpass microwave filter are presented. Bandpass filtering is implemented using an electrooptic phase modulator combined with a dispersive device to eliminate the baseband resonance of a typical low-pass filter. In addition to bandpass operation, the proposed filter also provides an improved mainlobe-to-sidelobe ratio (MSR) and a reduced mainlobe bandwidth compared with those of the conventional microwave filters with windowing. A four-tap bandpass microwave filter with a 3-dB mainlobe bandwidth of 2.65 GHz and an MSR of 30 dB is demonstrated. The filter performances, including the reconfigurability, tunability, and the dynamic range, are also discussed.

© 2005 IEEE

Citation
Fei Zeng and Jianping Yao, "Investigation of Phase-Modulator-Based All-Optical Bandpass Microwave Filter," J. Lightwave Technol. 23, 1721- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-4-1721


Sort:  Journal  |  Reset

References

  1. K. Wilner and A. P. Van Den Heuvel, "Fiber-optic delay lines for microwave signal processing", Proc. IEEE, vol. 64, pp. 805-807, 1976.
  2. K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman and H. J. Shaw, "Optical fiber delay-line signal processing", IEEE Trans. Microw. Theory Tech., vol. 33, no. 3, pp. 193-204, Mar. 1985.
  3. S. Sampson, R. Griffin and D. Jackson, "Photonic CDMA by coherent matched filtering using time-address coding in optical ladder networks", J. Lightw. Technol. , vol. 12, no. 11, pp. 2001-2010, Nov. 1994.
  4. J. Capmany and J. Cascon, "Discrete time fiber-optic signal processors using optical amplifiers", J. Lightw. Technol., vol. 12, no. 1, pp. 106-117, Jan. 1994.
  5. D. Norton, S. Johns, C. Keefer and R. Soref, "Tunable microwave filtering using high dispersion fiber time delays", IEEE Photon. Technol. Lett., vol. 6, no. 7, pp. 831-832, Jul. 1994.
  6. D. B. Hunter, R. Minasian and P. A. Krug, "Tunable optical transversal filter based on chirped gratings", Electron. Lett., vol. 31, pp. 2207-2210, Dec. 1995.
  7. W. Zhang, J. A. R. Williams and I. Bennion, "Polarization synthesized optical transversal filter employing high birefringence fiber gratings", IEEE Photon. Technol. Lett., vol. 13, no. 5, pp. 523-525, May 2001.
  8. V. Polo, B. Vidal, J. L. Corral and J. Marti, "Novel tunable photonics microwave filter based on laser arrays and N x N AWG-based delay lines", IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 584 -586, Apr. 2003.
  9. K. Sasayama, M. Okuno and K. Habara, "Coherent optical transversal filter using silica-based waveguides for high-speed signal processing", J. Lightw. Technol., vol. 9, no. 10, pp. 1225-1230, Oct. 1991.
  10. F. Coppinger, C. K. Madsen and B. Jalali, "Photonic microwave filtering using coherently coupled integrated ring resonators", Microw. Opt. Technol. Lett., vol. 21, pp. 90-93, Feb. 1999.
  11. S. Sales, J. Capmany, J. Marti and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients", Electron. Lett., vol. 31, pp. 1095-1096, Jul. 1995.
  12. F. Coppinger, S. Yegnanarayanan, P. D. Trinh and B. Jalali, "All-optical RF filter using amplitude inversion in a semiconductor optical amplifier", IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pp. 1473-1477, Aug. 1997.
  13. X. Wang and K. T. Chan, "Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fiber Bragg gratings", Electron. Lett., vol. 36, pp. 2001-2002, Dec. 2000 .
  14. S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang and I. Bennion, "A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings", IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1207 -1209, Sep. 2000.
  15. J. Capmany, D. Pastor, A. Martinez, B. Ortega and S. Sales, "Microwave photonics filters with negative coefficients based on phase inversion in an electro-optic modulator", Opt. Lett., vol. 28, pp. 1415-1417, Aug. 2003.
  16. J. Mora, M. V. Andres, J. L. Cruz, B. Ortega, J. Capmany, D. Pastor and S. Sales, "Tunable all-optical negative multitap microwave filters based on uniform fiber Bragg gratings", Opt. Lett., vol. 28, pp. 1308-1310, Aug. 2003.
  17. E. H. W. Chan and R. A. Minasian, "Novel all-optical RF notch filters with equivalent negative tap response", IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1370-1372, May 2004.
  18. D. B. Hunter and R. A. Minasian, "Microwave optical filters using in-fiber Bragg grating arrays", IEEE Microw. Guided Wave Lett., vol. 6, no. 2, pp. 103-105, Feb. 1996.
  19. J. Capmany, D. Pastor and B. Ortega, "Efficient sidelobe suppression by source power apodization in fiber optic microwave filters composed of linearly chirped fiber grating by laser array", Electron. Lett., vol. 35, pp. 640-642, Apr. 1999.
  20. F. Zeng and J. P. Yao, "All-optical bandpass microwave filter based on an electro-optic phase modulator", Opt. Express, vol. 12, pp. 3814-3819, Aug. 2004.
  21. G. J. Meslener, "Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection", IEEE J. Quantum Electron., vol. 20, no. 10, pp. 1208-1216, Oct. 1984.
  22. H. Schmuck, "Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion", Electron. Lett., vol. 31, pp. 1848-1849, Nov. 1995.
  23. Y. Liu, J. P. Yao, X. Dong and J. Yang, "Tunable chirping of a fiber Bragg grating without center wavelength shift using simply supported beam", Opt. Eng., vol. 41, pp. 740-741, Apr. 2002.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited