Theory of Spontaneous Emission Noise in Multisection Semiconductor Lasers
Journal of Lightwave Technology, Vol. 23, Issue 8, pp. 2491 (2005)
Acrobat PDF (237 KB)
Abstract
Calculations of spontaneous emission noise in semiconductor lasers are mainly based on a fundamental theory developed by Henry in 1986, which is useful for simple systems, together with a formulation in terms of transfer matrices by Makino and others, which facilitates application of the theory to more complicated multisection systems. The aim of this review is to present a unified account of this theoretical work in a transparent form intended to encourage its further use in complex systems. The opportunity is taken to strengthen the existing theory by including the effects of differing optical wave vectors in different sections and the consequent reflections at interfaces, which are important in some applications. Sample calculations are presented for a range of systems with one, two, three, and four sections and the predictions compared with other theoretical and experimental results.
© 2005 IEEE
Citation
Rodney Loudon, Desi Ramoo, and Michael J. Adams, "Theory of Spontaneous Emission Noise in Multisection Semiconductor Lasers," J. Lightwave Technol. 23, 2491 (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt2382491
Sort: Journal  Reset
References
 C. H. Henry, "Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers", J. Lightw. Technol., vol. LT4, no. 3, pp. 288297, Mar. 1986.
 C. H. Henry and R. F. Kazarinov, "Quantum noise in photonics", Rev. Mod. Phys., vol. 68, no. 3, pp. 801853, 1996.

C. H. Henry and R. F. Kazarinov,
"The origins of quantum noise in photonics",
LEOS Newsl., vol. 11, no. 6, pp. 35, Dec.
18 , 1997.  T. Makino, "Transfermatrix formulation of spontaneous emission noise of DFB semiconductor lasers", J. Lightw. Technol., vol. LT9, no. 1, pp. 8491, Jan. 1991.
 T. Makino, "Amplified spontaneous emission model for quantumwell distributed feedback lasers", IEEE J. Quantum Electron., vol. 33, no. 6, pp. 10101017, Jun. 1997.
 C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. Berlin: Germany: SpringerVerlag, 1996.
 G. Barton, Elements of Green's Functions and Propagation, Oxford: U.K.: Clarendon, 1989.
 E. Kreyszig, Advanced Engineering Mathematics, 8th ed. New York: Wiley, 2003.
 L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, New York: Wiley, 1995.
 R. Matloob, R. Loudon, M. Artoni, S. M. Barnett and J. Jeffers, "Electromagnetic field quantization in amplifying dielectrics", Phys. Rev. A, Gen. Phys., vol. 55, no. 3, pp. 16231633, 1997.
 K. Petermann, "Calculated spontaneous emission factor for doubleheterostructure injection lasers with gaininduced waveguiding", IEEE J. Quantum Electron., vol. QE15, no. 7, pp. 566570, Jul. 1979.
 E. I. Gordon, "Optical maser oscillators and noise", Bell Sys. Tech. J., vol. 43, no. 1, pp. 507539, 1964.
 I. D. Henning, M. J. Adams and J. V. Collins, "Performance predictions from a new optical amplifier model", IEEE J. Quantum Electron., vol. QE21, no. 6, pp. 609613, Jun. 1985.
 J. D. Jackson, Classical Electrodynamics, 3rd ed. New York: Wiley, 1999.
 C. H. Henry, "Theory of the linewidth of semiconductor lasers", IEEE J. Quantum Electron., vol. QE18, no. 2, pp. 259264, Feb. 1982.
 K. Ujihara, "Phase noise in a laser with output coupling", IEEE J. Quantum Electron., vol. QE20, no. 7, pp. 814818, Jul. 1984.
 J. Wang, N. Schunk and K. Petermann, "Linewidth enhancement for DFB lasers due to longitudinal field dependence in the laser cavity", Electron. Lett., vol. 23, no. 14, pp. 715717, 1987.
 A. E. Siegman, "Excess spontaneous emission in nonHermitian optical systems. II, Laser oscillators", Phys. Rev., A, vol. 39, no. 3, pp. 12641268, 1989.
 W. A. Hamel and J. P. Woerdman, "Nonorthogonality of the longitudinal eigenmodes of a laser", Phys. Rev., A, Gen. Phys., vol. 40, no. 5, pp. 27852787, 1989.
 P. Yeh, Optical Waves in Layered Media, New York: Wiley, 1988.
 G. Björk and O. Nilsson, "A new exact and efficient numerical matrix theory of complicated laser structures: Properties of asymmetric phaseshifted DFB lasers", J. Lightw. Technol., vol. LT5, no. 1, pp. 140146, Jan. 1987.
 H. Wenzel, "Green's function based simulation of the optical spectrum of multisection lasers", IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 3, pp. 865871, MayJun. 2003.
 H. Kogelnik and C. V. Shank, "Coupledwave theory of distributed feedback lasers", J. Appl. Phys., vol. 43, no. 5, pp. 23272335, 1972.
 M. J. Adams and J. Buus, "Twosegment cavity theory for mode selection in semiconductor lasers", IEEE J. Quantum Electron., vol. 20, no. 2, pp. 99103, Feb. 1984.
 S. Murata, I. Mito and K. Kobayashi, "Tuning ranges for 15 µ m wavelength tunable DBR lasers", Electron. Lett., vol. 24, no. 10, pp. 577579, 1988.
 A. Tsigopoulos, T. Sphicopoulos, I. Orfanos and S. Panetlis, "Wavelength tuning analysis and spectral characteristics of threesection DBR lasers", IEEE J. Quantum Electron., vol. 28, no. 2, pp. 415426, Feb. 1992.
 S. I. Pegg, M. J. Adams and K. Poguntke, "Absorptive switching and spectral characteristics of the sideinjection lightcontrolled bistable laser diode", IEEE J. Quantum Electron., vol. 36, no. 1, pp. 9499, Jan. 2000.
 S. I. Pegg, M. J. Adams and K. Poguntke, "Simultaneous absorptive and dispersive switching of a multisection bistable laser diode", Opt. Commun., vol. 174, no. 14, pp. 191194, 2000.
 C. Politi, G. A. Wimpenny and M. J. Adams, "Transmission matrix modelling of sampledgrating distributed Bragg reflector lasers", Opt. Commun., vol. 201, no. 1, pp. 139144, 2002.
Cited By 
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's CitedBy Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article  Next Article »
OSA is a member of CrossRef.