OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 23, Iss. 8 — Aug. 1, 2005
  • pp: 2568–

Long-Period Fiber Grating Fabrication by High-Intensity Femtosecond Pulses at 211 nm

Alexey I. Kalachev, David N. Nikogosyan, and Gilberto Brambilla

Journal of Lightwave Technology, Vol. 23, Issue 8, pp. 2568- (2005)

View Full Text Article

Acrobat PDF (440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Using high-intensity (110-200 GW/cm2) 250-fs 211-nm laser pulses and a point-by-point technique, the efficiency of long-period grating inscription in H2-loaded standard telecom Corning SMF-28 and H2-free photosensitive B-codoped Fibercore fibers was studied and compared with those at other existing recording methods (low-intensity 157-nm, 193-nm, 248-nm or high-intensity 264-nm fabrications). It was shown that at high-intensity 211-nm laser inscription, two-quantum photoreactions are responsible for long-period fiber grating (LPFG) formation, which results in a significant photosensitivity enhancement in comparison with conventional low-intensity 248-nm exposure (by 45 times for SMF-28 fiber). It was found that the grating strength in the case of SMF-28 fiber, irradiated with high-intensity 211-nm pulses, reaches 28 dB, which is the highest value among all known photochemical approaches. The thermal studies of the recorded gratings were also conducted.

© 2005 IEEE

Alexey I. Kalachev, David N. Nikogosyan, and Gilberto Brambilla, "Long-Period Fiber Grating Fabrication by High-Intensity Femtosecond Pulses at 211 nm," J. Lightwave Technol. 23, 2568- (2005)

Sort:  Journal  |  Reset


  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan and J. E. Sipe, "Long-period fiber gratings as band-rejection filters", J. Lightw. Technol., vol. 14, no. 1, pp. 58-65, Jan. 1996.
  2. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: Characteristics and application", Meas. Sci. Technol., vol. 14, no. 5, pp. R49-R61, May 2003.
  3. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors", Opt. Lett., vol. 21, no. 9, pp. 669-694, May 1996.
  4. V. Bhatia, D. K. Campbell, R. O. Claus and A. M. Vengsarkar, "Simultaneous strain and temperature measurement with long-period gratings", Opt. Lett., vol. 22, no. 9, pp. 648-650, May 1997.
  5. B.-O. Guan, H.-Y. Tam, H. L. W. Chan, C.-L. Choy and M. S. Demokan, "Growth characteristics of long-period gratings in hydrogen-loaded fibre during and after 193 nm UV inscription", Meas. Sci. Technol., vol. 12, no. 7, pp. 818-823, Jul. 2001.
  6. K. P. Chen, P. R. Herman, R. Tam and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F2 -laser radiation", Electron. Lett., vol. 36, no. 24, pp. 2000-2001, May 2000.
  7. K. P. Chen, P. R. Herman, J. Zhang and R. Tam, "Fabrication of strong long-period gratings in hydrogen-free fibers with 157-nm F2 -laser radiation", Opt. Lett., vol. 26, no. 11, pp. 771-773, Jun. 2001.
  8. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond pulses", Opt. Lett., vol. 24, no. 10, pp. 646-648, May 1999.
  9. F. Hindle, E. Fertein, C. Przygodzki, F. Dürr, L. Paccou, R. Bocquet, P. Niay, H. G. Limberger and M. Douay, "Inscription of long-period gratings in pure silica and germano-silicate fiber cores by femtosecond laser irradiation", IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1861-1863, Aug. 2004.
  10. A. Dragomir, D. N. Nikogosyan, A. A. Ruth, K. A. Zagorulko and P. G. Kryukov, "Long-period fibre grating formation with 264 nm femtosecond radiation", Electron. Lett., vol. 38, no. 6, pp. 269-271, Mar. 2002.
  11. A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko and P. G. Kryukov, "Inscription of long-period fibre gratings by femtosecond UV radiation", Proc. SPIE, vol. 4876, pp. 313-320, Mar. 2003.
  12. D. N. Nikogosyan, "Two-quantum UV photochemistry of nucleic acids: Comparison with conventional low-intensity UV photochemistry and radiation chemistry", Int. J. Radiat. Biol., vol. 57, no. 2, pp. 233-299, Feb. 1990.
  13. A. Dragomir, J. G. McInerney, D. N. Nikogosyan and P. G. Kazansky, "Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm", Appl. Phys. Lett., vol. 80, no. 7, pp. 1114-1116, Feb. 2002.
  14. S. A. Slattery, D. N. Nikogosyan and G. Brambilla, "Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: Comparison with other existing methods of fabrication", J. Opt. Soc. Amer. B, vol. 22, no. 2, pp. 354-361, Feb. 2005.
  15. J. Nishii, N. Kitamura, H. Yamanaka, H. Hosono and H. Kawazoe, "Ultraviolet-radiation-induced chemical reactions through one-and two-photon absorption processes in GeO2- SiO2 glasses", Opt. Lett., vol. 20, no. 10, pp. 1184-1186, May 1995.
  16. A. I. Kalachev, V. Pureur and D. N. Nikogosyan, "Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses", Opt. Commun., vol. 246, no. 1-3, pp. 107-115, Feb. 2005.
  17. "Twinkle, Highly Integrated Pico/Femtosecond CPA Nd:Glass Laser System",
  18. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, New York: Springer-Verlag, 2005, p. 10.
  19. A. Dubietis, G. Tamosauskas, A. Varanaviius, G. Valiulis and R. Danielius, "Generation of femtosecond radiation at 211 nm by femtosecond pulse upconversion in the field of a picosecond pulse", Opt. Lett., vol. 25, no. 15, pp. 1116-1118, Aug. 2000.
  20. A. Dubietis, G. Tamosauskas, A. Varanaviius, G. Valiulis and R. Danielius, "Highly-efficient subpicosecond pulse generation at 211 nm", J. Opt. Soc. Amer. B, vol. 17, no. 1, pp. 48-52, Jan. 2000.
  21. S. A. Slattery and D. N. Nikogosyan, "Two-photon absorption at 211 nm in fused silica, crystalline quartz and some alkali halides", Opt. Commun., vol. 228, no. 1-3, pp. 127-131, Dec. 2003.
  22. A. Dragomir, J. G. McInerney and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at \lambda = 264\ nm in glasses, crystals and liquids", Appl. Opt., vol. 41, no. 21, pp. 4365-4376, Jul. 2002.
  23. M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings", Opt. Commun., vol. 208, no. 4-6, pp. 321-327, Jul. 2002.
  24. M. I. Braiwish, B. L. Bachim and T. K. Gaylord, "Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters", Appl. Opt., vol. 43, no. 9, pp. 1789-1793, Mar. 2004.
  25. G. Humbert and A. Malki, "Characterizations at very high temperature of electric arc-induced long-period fiber gratings", Opt. Commun., vol. 208, no. 4-6, pp. 329-335, Jul. 2002.
  26. S. H. Num, C. Zhan, J. Lee, C. Hahn, K. Reichard, P. Ruffin, K.-L. Deng and S. Yin, "Bend-insensitive ultra short long-period gratings by the electric arc method and their applications to harsh environment sensing and communication", Opt. Express, vol. 13, no. 3, pp. 731-737, Feb. 2005.
  27. P. Guenot, "Material aspects of standard transmission optical fibers", MRS Bull., vol. 28, no. 5, pp. 360-364, May 2003.
  28. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials-A Handbook, Chichester: U.K.: Wiley, 1997, p. 174.
  29. I. P. Kaminow, B. G. Bagley and C. G. Olson, "Measurements of the absorption edge in fused silica", Appl. Phys. Lett., vol. 32, no. 2, pp. 98-99, Jan. 1978.
  30. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials-A Handbook, Chichester: U.K.: Wiley, 1997, p. 177.
  31. M. J. Weber, Ed. Handbook of Optical Materials, Boca Raton, FL: CRC Press, 2003, p. 238.
  32. R. M. Atkins, V. Mizrahi and T. Erdogan, "248 nm induced vacuum UV spectral changes in optical fibre perform cores: Support for a colour centre model of photosensitivity", Electron. Lett., vol. 29, no. 4, pp. 385-387, Feb. 1993.
  33. F. Dürr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers", Appl. Phys. Lett., vol. 84, no. 24, pp. 4983-4985, Jun. 2004.
  34. M. Dubov, I. Bennion, S. A. Slattery and D. N. Nikogosyan, "Strong long-period fiber gratings recorded at 352 nm", Opt. Lett.,,
  35. X. Shu, T. Allsop, B. Gwandu, L. Zhang and I. Bennion, "High-temperature sensitivity of long-period gratings in B-Ge codoped fiber", IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 818-820, Aug. 2001.
  36. T. Erdogan, "Cladding mode resonances in short and long period fiber gratings filters", J. Opt. Soc. Amer. A, vol. 14, no. 8, pp. 1760-1773, Aug. 1997.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited