OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 1 — Jan. 1, 2006
  • pp: 183–

High-Nonlinearity Dispersion-Shifted Lead-Silicate Holey Fibers for Efficient 1-µm Pumped Supercontinuum Generation

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, Heike Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson

Journal of Lightwave Technology, Vol. 24, Issue 1, pp. 183- (2006)


View Full Text Article

Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper reports on the recent progress in the design and fabrication of high-nonlinearity lead-silicate holey fibers (HFs). First, the fabrication of a fiber designed to offer close to the maximum possible nonlinearity per unit length in this glass type is described. A value of \gamma = 1860 W-1 · km-1 at a wavelength of 1.55 µm is achieved, which is believed to be a record for any fiber at this wavelength. Second, the design and fabrication of a fiber with a slightly reduced nonlinearity but with dispersion-shifted characteristics tailored to enhance broadband supercontinuum (SC) generation when pumped at a wavelength of 1.06 µm-a wavelength readily generated using Yb-doped fiber lasers-are described. SC generation spanning more than 1000 nm is observed for modest pulse energies of \sim 100 pJ using a short length of this fiber. Finally, the results of numerical simulations of the SC process in the proposed fibers are presented, which are in good agreement with the experimental observations and highlight the importance of accurate control of the zero-dispersion wavelength (ZDW) when optimizing such fibers for SC performance.

© 2006 IEEE

ToC Category:
Papers

Citation
J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, Heike Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-Nonlinearity Dispersion-Shifted Lead-Silicate Holey Fibers for Efficient 1-µm Pumped Supercontinuum Generation," J. Lightwave Technol. 24, 183- (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-1-183


Sort:  Journal  |  Reset

References

  1. J. C. Knight, T. A. Birks, P. S. J. Russell and D. M. Atkin, "All-silica single-mode photonic crystal fiber", Opt. Lett., vol. 21, no. 19, pp. 1547-1549, Oct. 1996.
  2. T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications", Comptes Rendus Physique, vol. 4, no. 1, pp. 175-186, Jan. 2003.
  3. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro and D. J. Richardson, "Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold", IEEE Photon. Technol. Lett., vol. 15, no. 3, pp. 440-442, Mar. 2003.
  4. V. Finazzi, T. M. Monro and D. J. Richardson, "Small-core silica holey fibers: Nonlinearity and confinement loss trade-offs", J. Opt. Soc. Amer. B, Opt. Phys., vol. 20, no. 7, pp. 1427-1436, Jul. 2003.
  5. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick and D. J. Richardson, "Chalcogenide holey fibers", Electron. Lett., vol. 36, no. 24, pp. 1998-2000, Nov. 2000.
  6. V. Kumar, A. K. George, J. C. Knight and P. S. Russell, "Tellurite photonic crystal fiber", Opt. Express, vol. 11, no. 20, pp. 2641-2645, Oct. 2003.
  7. A. Mori, K. Shikano, W. Enbutsu, K. Oikawa, K. Naganuma, M. Kato and S. Aozasa, "1.5 µm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient of 675 W-1 km-1", presented at the Eur. Conf. Optical Communication (ECOC), Stockholm, Sweden,Paper Th3.3.6, Sep. <day>5-9</day>, 2004.
  8. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity", Opt. Express, vol. 12, no. 21, pp. 5082-5087, Oct. 2004.
  9. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson and H. N. Rutt, "Extruded single-mode non-silica glass holey optical fibres", Electron. Lett., vol. 38, no. 12, pp. 546-547, Jun. 2002.
  10. V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. S. J. Russell, F. G. Omenetto and A. J. Taylor, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation", Opt. Express, vol. 10, no. 25, pp. 1520-1525, Dec. 2002.
  11. P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Frampton, R. C. Moore and D. J. Richardson, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers", Opt. Express, vol. 11, no. 26, pp. 3568-3573, Dec. 2003.
  12. J. Y. Y. Leong, P. Petropoulous, S. Asimakis, H. Ebendorff-Heiderpriem, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, J. H. V. Price, T. M. Monro and D. J. Richardson, "A lead silicate holey fiber with \gamma = 1860 W-1km-1 at 1550 nm", presented at the Optical Fiber Communication (OFC), Anaheim, CA, PDP22, 2005.
  13. E. M. Vogel, M. J. Weber and D. M. Krol, "Nonlinear optical phenomena in glass", Phys. Chem. Glasses, vol. 32, no. 6, pp. 231-254, 1991.
  14. "Schott E-Catalogue 2003 Optical Glass, Schott Glass, Mainz, Germany",
  15. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber", IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 807-809, Jul. 2000.
  16. A. V. Husakou and J. Herrmann, "Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses", Appl. Phys., B Lasers Opt., vol. 77, no. 2/3, pp. 227-234, Sep. 2003.
  17. A. Boskovich, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen and O. A. Levring, "Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm", Opt. Lett., vol. 21, no. 24, pp. 1966-1968, Dec. 1996.
  18. R. H. Stolen, C. Lee and R. K. Jain, "Development of the stimulated Raman-spectrum in single-mode silica fibers", J. Opt. Soc. Amer. B, Opt. Phys., vol. 1, no. 4, pp. 652-657, Aug. 1984.
  19. R. H. Stolen, J. P. Gordon, W. J. Tomlinson and H. A. Haus, "Raman response function of silica-core fibers", J. Opt. Soc. Amer. B, Opt. Phys., vol. 6, no. 6, pp. 1159-1166, Jun. 1989.
  20. G. P. Agrawal, Nonlinear Fiber Optics, San Diego, CA: Academic, 1995.
  21. J. H. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. J. Coyle, C. Netti, J. J. Baumberg, R. Paschotta and D. J. Richardson, "UV generation in a pure silica holey fiber", Appl. Phys., B Lasers Opt., vol. 77, no. 2/3, pp. 291-298, Sep. 2003.
  22. J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers", Opt. Lett., vol. 27, no. 13, pp. 1180-1182, Jul. 2002.
  23. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers", Opt. Express, vol. 10, no. 20, pp. 1083-1098, Oct. 2002.
  24. G. Q. Chang, T. B. Norris and H. G. Winful, "Optimization of supercontinuum generation in photonic crystal fibers for pulse compression", Opt. Lett., vol. 28, no. 7, pp. 546-548, Apr. 2003.
  25. J. Y. Y. Leong, S. Asimakis, F. Poletti, P. Petropoulos, X. Feng, R. C. Moore, K. E. Frampton, T. M. Monro, H. Ebendorff-Heiderpriem, W. H. Loh and D. J. Richardson, "Towards zero dispersion highly nonlinear lead silicate glass holey fibres at 1550 nm by structured-element-stacking", presented at the Eur. Conf. Optical Communication (ECOC), Glasgow, U.K.,Th4.4.5 (Postdeadline), 2005.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited