OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 1 — Jan. 1, 2006
  • pp: 77–

Fully Programmable Ring-Resonator-Based Integrated Photonic Circuit for Phase Coherent Applications

Anjali Agarwal, Paul Toliver, Ronald Menendez, Shahab Etemad, Janet Jackel, Jeffrey Young, Thomas Banwell, B. E. Little, S. T. Chu, Wei Chen, Wenlu Chen, J. Hryniewicz, F. Johnson, D. Gill, O. King, R. Davidson, K. Donovan, and Peter J. Delfyett

Journal of Lightwave Technology, Vol. 24, Issue 1, pp. 77- (2006)


View Full Text Article

Acrobat PDF (720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A novel ring-resonator-based integrated photonic chip with ultrafine frequency resolution, providing programmable, stable, and accurate optical-phase control is demonstrated. The ability to manipulate the optical phase of the individual frequency components of a signal is a powerful tool for optical communications, signal processing, and RF photonics applications. As a demonstration of the power of these components, we report their use as programmable spectral-phase encoders (SPEs) and decoders for wavelength-division-multiplexing (WDM)-compatible optical code-division multiple access (OCDMA). Most important for the application here, the high resolution of these ring-resonator circuits makes possible the independent control of the optical phase of the individual tightly spaced frequency lines of a mode-locked laser (MLL). This unique approach allows us to limit the coded signal's spectral bandwidth, thereby allowing for high spectral efficiency (compared to other OCDMA systems) and compatibility with existing WDM systems with a rapidly reconfigurable set of codes. A four-user OCDMA system using polarization multiplexing is shown to operate at data rates of 2.5 Gb/s within a 40-GHz transparent optical window with a bit error rate (BER) better than 10-9 and a spectral efficiency of 25%.

© 2006 IEEE

ToC Category:
Papers

Citation
Anjali Agarwal, Paul Toliver, Ronald Menendez, Shahab Etemad, Janet Jackel, Jeffrey Young, Thomas Banwell, B. E. Little, S. T. Chu, Wei Chen, Wenlu Chen, J. Hryniewicz, F. Johnson, D. Gill, O. King, R. Davidson, K. Donovan, and Peter J. Delfyett, "Fully Programmable Ring-Resonator-Based Integrated Photonic Circuit for Phase Coherent Applications," J. Lightwave Technol. 24, 77- (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-1-77

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited