OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 10 — Oct. 1, 2006
  • pp: 3816–3823

A Simplified Technique for Efficient Fiber-Polymer-Waveguide Power Coupling Using a Customized Cladding With Tunable Index of Refraction

Mohan Sanghadasa, Paul R. Ashley, Eric L. Webster, Carys Cocke, Geoffrey A. Lindsay, and Andrew J. Guenthner

Journal of Lightwave Technology, Vol. 24, Issue 10, pp. 3816-3823 (2006)


View Full Text Article

Acrobat PDF (854 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A novel technique to minimize the mode mismatch between the fiber and waveguide modes in integrating optical fiber to polymer waveguides is presented. The mode fields at the facets of the waveguides were tailored, optimizing the waveguide geometry as well as tuning the index of refraction of the lower cladding near the facets, by chemical composition. No additional processes were required after the core was deposited. The modified lower cladding can be integrated efficiently with any other lower-cladding material used in the remaining portion of the waveguide, resulting in hybrid waveguides. A power-coupling loss as low as 0.46 dB at the fiber-waveguide interfaces was demonstrated with the available fiber.

© 2006 IEEE

Citation
Mohan Sanghadasa, Paul R. Ashley, Eric L. Webster, Carys Cocke, Geoffrey A. Lindsay, and Andrew J. Guenthner, "A Simplified Technique for Efficient Fiber-Polymer-Waveguide Power Coupling Using a Customized Cladding With Tunable Index of Refraction," J. Lightwave Technol. 24, 3816-3823 (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-10-3816


Sort:  Journal  |  Reset

References

  1. J. Noda, O. Mikami, M. Minakata, M. Fukuma, "Single-mode optical-waveguide fiber coupler," Appl. Opt. 17, 2092-2096 (1978).
  2. Y. Cai, T. Mizumoto, "An effective method for coupling single-mode fiber to thin-film waveguide," IEEE J. Quantum Electron. QE-17, 970-974 (1981).
  3. Y. Yamada, M. Kawachi, M. Yasu, M. Kobayashi, "High-silica multimode channel waveguide structure for minimizing fiber-waveguide-fiber coupling loss," J. Lightw. Technol. LT-4, 277-282 (1986).
  4. R. K. Winn, J. H. Harris, "Coupling from multimode to single-mode linear waveguides using horn-shaped structures," IEEE Trans. Microw. Theory Tech. MTT-23, 92-97 (1975).
  5. A. Milton, W. Burns, "Mode coupling in optical waveguide horns," IEEE J. Quantum Electron. QE-13, 828-835 (1977).
  6. J. Campbell, "Tapered waveguides for guided wave optics," Appl. Opt. 18, 900-902 (1979).
  7. T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, M. Melchior, "Vertical InP/InGaAsP tapers for low-loss optical fiber-waveguide coupling," Electron. Lett. 28, 2040-2041 (1982).
  8. H. P. Hsu, A. F. Milton, W. K. Burns, "Multiple fiber end fire coupling with single-mode channel waveguides," Appl. Phys. Lett. 33, 603-605 (1978).
  9. J. C. Campbell, "Coupling of fibers to Ti-diffused $\hbox{LiNbO}_{3}$ waveguides by butt-joining," Appl. Opt. 18, 2037-2040 (1979).
  10. R. Keil, A. Auracher, "Coupling of single-mode Ti-diffused $\hbox{LiNbO}_{3}$ waveguides to single-mode fibers," Opt. Commun. 30, 23-28 (1979).
  11. M. Fukuma, J. Noda, "Optical properties of titanium-diffused $\hbox{LiNbO}_{3}$ strip waveguides and their coupling-to-a-fiber characteristics," Appl. Opt. 19, 591-597 (1980).
  12. C. H. Bulmer, S. K. Sheem, R. P. Moeller, W. K. Burns, "High-efficiency flip-chip coupling between single-mode fibers and $\hbox{LiNbO}_{3}$ channel waveguides," Appl. Phys. Lett. 37, 351-353 (1980).
  13. O. G. Ramer, C. Nelson, C. Mohr, "Experimental integrated optic circuit losses and fiber pigtailing of chips," IEEE J. Quantum Electron. QE-17, 970-974 (1981).
  14. R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, "Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for $\lambda = 1.32\ \mu\hbox{m}$," IEEE J. Quantum Electron. QE-18, 1807-1813 (1982).
  15. J. J. Veselka, S. K. Korotky, "Optimization of $\hbox{Ti:LiNbO}_{3}$ optical waveguides and directional coupler switches for 1.56 $\mu\hbox{m}$ wavelength," IEEE J. Quantum Electron. QE-22, 933-938 (1986).
  16. P. G. Suchoski, R. V. Ramaswamy, "Constant-width variable-index transition for efficient $\hbox{Ti:LiNbO}_{3}$ waveguide-fiber coupling," J. Lightw. Technol. LT-5, 1246-1251 (1987).
  17. L. Eldada, J. Fujita, A. Radojevic, R. Gerhardt, T. Izuhara, "Hybrid organic–inorganic optoelectronic subsystems on a chip," Proc. SPIE (2005) pp. 200-213.
  18. A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, L. R. Dalton, "Vertically tapered polymer waveguide mode size transformer for improved fiber coupling," Opt. Eng. 39, 1507-1516 (2000).
  19. S.-W. Ahn, W. H. Steier, Y.-H. Kuo, M.-C. Oh, H.-J. Lee, G. Zhang, H. R. Fetterman, "Integration of electro-optic polymer modulator with low loss fluorinated polymer waveguides," Opt. Lett. 27, 2109-2111 (2002).
  20. L. G. Burns, G. B. Hocker, "End fire coupling between optical fibers and diffused channel waveguides," Appl. Opt. 16, 2048-2050 (1977).
  21. R. Ulrich, R. Torge, "Measurement of thin film parameters with a prism coupler," Appl. Opt. 12, 2901-2908 (1973).
  22. Polyimides having an unusually low and tunable electrical resistivity useful for electrical and optical applications U.S. Patent 6 861 497 (2005).
  23. A. J. Guenthner, K. R. Davis, L. Steinmetz, J. M. Pentony, New Developments in Coatings Technology (, 2006).
  24. A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, L. R. Dalton, "Integrated polymer waveguide mode size transformer with a vertical taper for improved fiber coupling," Proc. SPIE (Feb. 1997) pp. 65-76.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited