OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 11 — Nov. 1, 2006
  • pp: 4304–4313

A Fabrication Process for Microstructured Optical Fibers

Rosalind M. Wynne

Journal of Lightwave Technology, Vol. 24, Issue 11, pp. 4304-4313 (2006)


View Full Text Article

Acrobat PDF (371 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, a fabrication process is introduced and demonstrated for a square microstructured optical fiber lattice. An existing mathematical model of the manufacturing process of a single-hole capillary tube was modified to identify parameters for the microstructured fiber case. Commercial interests in silica microstructured optical fiber have resulted in the limited documentation of the fabrication process. This work may provide a straightforward technique to produce high-quality novel silica microstructured optical fibers with the potential to serve as a “road map” to future research in the area of micro- and nanostructured fiber development.

© 2006 IEEE

Citation
Rosalind M. Wynne, "A Fabrication Process for Microstructured Optical Fibers," J. Lightwave Technol. 24, 4304-4313 (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-11-4304


Sort:  Journal  |  Reset

References

  1. T. A. Birks, J. C. Knight, P. S. J. Russell, "Endlessly single mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, Optics of Nanostructured Materials (Wiley, 2001) pp. 39-71.
  3. J. C. Knight, Light Scattering from Microstructures (Springer-Verlag, 2002) pp. 253-267.
  4. A. Bjarklev, J. Broeng, A. Sanchez Bjarklev, Photonic Crystal Fibres (Kluwer, 2003).
  5. S. C. Xue, "Fabrication of microstructured optical fibres—Part I: Problem formulation and numerical modeling of transient draw process," J. Lightw. Technol. 23, 2245-2254 (2005).
  6. S. C. Xue, "Fabrication of microstructured optical fibres—Part II: Numerical modeling of steady-state draw process," J. Lightw. Technol. 23, 2255-2266 (2005).
  7. K. E. Framton, Fabrication of microstructured optical fibre World Intellectual Property Organization (PCT) WO 03/078339 A1 (2003).
  8. N. F. Borelli, J. F. Wright, Jr, and R. R. Wusirika, Method of fabricating photonic structures U.S. Patent 6 496 632 (2002).
  9. C. Jackobsen, G. Vienne, T. P. Hansen, Preform method of its production, and use thereof in production of microstructured optical fibres World Intellectual Property Organization (PCT) WO 03/078338 A2 (2003).
  10. T. Hasegawa, Optical fiber and method for making the same U.S. Patent 6 766 088 (2004).
  11. A. F. Benabid, J. C. Knight, Improvements in and relating to microstructured optical fibres World Intellectual Property Organization (PCT) WO 2004/001461 A1 (2003).
  12. J. Broeng, S. E. Barkou, A. O. Bjarklev, Microstructured optical fibres World Intellectual Property Organization (PCT) WO 99/64903 (1999).
  13. M. T. Gallagher, Methods for manufacturing microstructured optical fiber with arbitrary core size World Intellectual Property Organization (PCT) WO 2004/046054 A2 (2004).
  14. W. Belardi, Holey optical fibers World Intellectual Property Organization (PCT) WO 02/16980 A1 (2002).
  15. P. J. Russell, Photonic crystal fibre and a method for its production World Intellectual Property Organization (PCT) WO 00/60388 (2000).
  16. J. C. Fajardo, T. A. Cook, M. T. Gallagher, Method of making photonic band gap fibers U.S. Patent 6 444 133 (2002).
  17. D. J. DiGiovanni, Article comprising a microstructured optical fiber, and method of making such fiber U.S. Patent 5 802 236 (1998).
  18. J. B. Eom, "Optical properties measurement of several photonic crystal fibers," Proc. SPIE—Int. Soc. Optical Eng.: Photonics West 2002: Integrated Optoelectronic Devices (2002) pp. 124-131.
  19. A. D. Fitt, "Modeling the fabrication of hollow fibers: Capillary drawing," J. Lightw. Technol. 19, 1924-1931 (2001).
  20. F. T. Geyling, "Effects of inertia, surface tension, and gravity on the stability of isothermal drawing of Newtonian fluids," Ind. Eng. Chem. Fundam. 20, 147-149 (1981).
  21. A. D. Fitt, "The mathematical modeling of capillary drawing for holey fibre manufacture," J. Eng. Math. 43, 201-227 (2002).
  22. R. M. Wynne, Microstructured optical fiber fabrication: an integrated parametric approach Ph.D. dissertation Dept. Elect. Eng., Boston Univ., Boston, MA, May 2005.
  23. R. H. Doremus, "Viscosity of silica," J. Appl. Phys. 92, 7619-7629 (2002).
  24. N. P. Bansal, R. H. Doremus, Handbook of Glass Properties (Academic, 1986) pp. 14.
  25. C. J. Voyce, A. D. Fitt, "Mathematical model of the spinning of microstructured fibers," Opt. Express 12, 5810-5820 (2004).
  26. J. C. Knight, "All silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
  27. J. C. Knight, "Properties of photonic crystal fiber and the effective index model," J. Opt. Soc. Amer. A, Opt. Image Sci. 15, 748-752 (1998).
  28. T. M. Monro, "Holey fiber with random cladding distributions," Opt. Lett. 25, 206-208 (2000).
  29. T. M. Monro, "Holey optical fibers: An efficient modal model," J. Lightw. Technol. 17, 1093-1101 (1999).
  30. G. Humbert, "Hollow core photonic crystal fiber for beam delivery," Opt. Express 12, 1477-1484 (2004).
  31. N. M. Litchinitser, "Simple model for photonic bandgap microstructured optical fibers," Tech. Dig. Summary Papers Conf. Lasers Electro-Optics, Long Beach Convention Center, Long Beach, CA, May 19–24, 2002.
  32. R. F. Cregan, "Single mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
  33. B. T. Kuhmley, R. C. Mc Phedran, C. Martijin de Sterke, "Modal cutoff in microstructured optical fibers," Opt. Lett. 27, 1684-1686 (2002).
  34. G. Keiser, Optical Fiber Communication (McGraw-Hill, 2000).
  35. L. E. Curtiss, Glass Fiber Optical Devices U.S. Patent 3 589 793 (1971).
  36. K. Tajima, "Ultra low loss and long length photonic crystal fiber," Optical Fiber Communication Conf. (OFC), Atlanta, GA, Mar. 2003, PD1.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited