OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4433–4454

Optical MEMS for Lightwave Communication

Ming C. Wu, Olav Solgaard, and Joseph E. Ford

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4433-4454 (2006)


View Full Text Article

Acrobat PDF (3607 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The intensive investment in optical microelectromechanical systems (MEMS) in the last decade has led to many successful components that satisfy the requirements of lightwave communication networks. In this paper, we review the current state of the art of MEMS devices and subsystems for lightwave communication applications. Depending on the design, these components can either be broadband (wavelength independent) or wavelength selective. Broadband devices include optical switches, crossconnects, optical attenuators, and data modulators, while wavelength-selective components encompass wavelength add/drop multiplexers, wavelength-selective switches and crossconnects, spectral equalizers, dispersion compensators, spectrometers, and tunable lasers. Integration of MEMS and planar lightwave circuits, microresonators, and photonic crystals could lead to further reduction in size and cost.

© 2006 IEEE

Citation
Ming C. Wu, Olav Solgaard, and Joseph E. Ford, "Optical MEMS for Lightwave Communication," J. Lightwave Technol. 24, 4433-4454 (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-12-4433


Sort:  Journal  |  Reset

References

  1. K. E. Petersen, "Micromechanical light modulator array fabricated on silicon [laser display applications]," Appl. Phys. Lett. 31, 521-523 (1977).
  2. K. E. Petersen, "Silicon torsional scanning mirror," IBM J. Res. Develop. 24, 631-637 (1980).
  3. L. J. Hornbeck, "Projection displays and MEMS: Timely convergence for a bright future," SPIE—Int. Soc. Optical Eng. Conf. (1995).
  4. O. Solgaard, F. S. A. Sandejas, D. M. Bloom, "Deformable grating optical modulator," Opt. Lett. 17, 688-690 (1992).
  5. K. W. Goossen, J. A. Walker, S. C. Arney, "Silicon modulator based on mechanically-active antireflection layer with 1 Mbit/sec capability for fiber-in-the-loop applications," IEEE Photon. Technol. Lett. 6, 1119-1121 (1994).
  6. S. S. Lee, L. Y. Lin, M. C. Wu, "Surface-micromachined free-space fibre-optic switches," Electron. Lett. 31, 1481-1482 (1995).
  7. M. C. Wu, "Micromachining for optical and optoelectronic systems," Proc. IEEE 85, 1833-1856 (1997).
  8. R. S. Muller, K. Y. Lau, "Surface-micromachined microoptical elements and systems," Proc. IEEE 86, 1705-1720 (1998).
  9. L. Y. Lin, E. L. Goldstein, R. W. Tkach, "Free-space micromachined optical switches for optical networking," IEEE J. Sel. Topics Quantum Electron. 5, 4-9 (1999).
  10. D. J. Bishop, C. R. Giles, S. R. Das, "The rise of optical switching," Sci. Amer. 284, 88-94 (2001).
  11. J. E. Ford, "Optical MEMS: Legacy of the telecom boom," Proc. Solid State Sensor, Actuator and Microsyst. Workshop (2004) pp. 1-3.
  12. J. A. Walker, K. W. Goossen, S. C. Arney, "Fabrication of a mechanical antireflection switch for fiber-to-the-home systems," J. Microelectromech. Syst. 5, 45-51 (1996).
  13. C. Marxer, M. A. Gretillat, V. P. Jaecklin, R. Baettig, O. Anthamatten, P. Vogel, "Megahertz opto-mechanical modulator," Sens. Actuators A, Phys. 52, 46-50 (1996).
  14. D. S. Greywall, P. A. Busch, J. A. Walker, "Phenomenological model for gas-damping of micromechanical structures," Sens. Actuators A, Phys. 72, 49-70 (1999).
  15. C. Marxer, M. A. Gretillat, N. F. de Rooij, R. Battig, O. Anthamatten, B. Valk, P. Vogel, "Reflective duplexer based on silicon micromechanics for fiber-optic communication," J. Lightw. Technol. 17, 115-122 (1999).
  16. J. E. Ford, J. A. Walker, D. S. Greywall, K. W. Goossen, "Micromechanical fiber-optic attenuator with 3 microsecond response," J. Lightw. Technol. 16, 1663-1670 (1998).
  17. B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, "A fiber connectorized MEMS variable optical attenuator," IEEE Photon. Technol. Lett. 10, 1262-1264 (1998).
  18. C. Marxer, P. Griss, N. F. de Rooij, "A variable optical attenuator based on silicon micromechanics," IEEE Photon. Technol. Lett. 11, 233-235 (1999).
  19. K. Isamoto, K. Kato, A. Morosawa, C. H. Chong, H. Fujita, H. Toshiyoshi, "A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining," IEEE J. Sel. Topics Quantum Electron. 10, 570-578 (2004).
  20. A. Godil, "Diffractive MEMS technology offers a new platform for optical networks," Laser Focus World 38, 181-185 (2002).
  21. http://www.lightconnect.com/news/news_release030205.shtml (2005).
  22. H. Toshiyoshi, H. Fujita, "Electrostatic micro torsion mirrors for an optical switch matrix," J. Microelectromech. Syst. 5, 231-237 (1996).
  23. R. A. Miller, Y. C. Tai, G. Xu, J. Bartha, F. Lin, "An electromagnetic MEMS 2 $\times$ 2 fiber optic bypass switch," Int. Conf. Solid-State Sensors and Actuators ChicagoIL (1997) Paper 1A4.
  24. C. Marxer, C. Thio, M. A. Gretillat, N. F. de Rooij, R. Battig, O. Anthamatten, B. Valk, P. Vogel, "Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications," J. Microelectromech. Syst. 6, 277-285 (1997).
  25. C. Marxer, N. F. de Rooij, "Micro-opto-mechanical 2 $\times$ 2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation," J. Lightw. Technol. 17, 2-6 (1999).
  26. B. Hichwa, M. Duelli, D. Friedrich, C. Iaconis, C. Marxer, M. Mao, C. Olson, "A unique latching 2 $\times$ 2 MEMS fiber optics switch," IEEE Conf. Optical MEMS KauaiHI (2000).
  27. W. Noell, P. A. Clerc, F. Duport, C. Marxer, N. de Rooij, "Novel process-insensitive latchable 2 $\times$ 2 optical cross connector for single- and multimode optical MEMS fiber switches," Proc. IEEE/LEOS Int. Conf. Optical MEMS (Cat. No. 03EX682) (2003) pp. 49-50.
  28. L. Y. Lin, E. L. Goldstein, R. W. Tkach, "Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects," IEEE Photon. Technol. Lett. 10, 525-527 (1998).
  29. L. Fan, S. Gloeckner, P. D. Dobblelaere, S. Patra, D. Reiley, C. King, T. Yeh, J. Gritters, S. Gutierrez, Y. Loke, M. Harburn, R. Chen, E. Kruglick, M. Wu, A. Husain, "Digital MEMS switch for planar photonic crossconnects," OFC—Postconference Tech. Dig. (IEEE Cat. No. 02CH37339) (2002) pp. 93-94.
  30. B. Behin, K. Y. Lau, R. S. Muller, "Magnetically actuated micromirrors for fiber-optic switching," Proc. Tech. Dig. Solid-State Sensor and Actuator Workshop (1998) pp. 273-276.
  31. R. L. Wood, R. Mahadevan, E. Hill, "MEMS 2D matrix switch," Proc. OFC—Postconference Tech. Dig. (IEEE Cat. No. 02CH37339) (2002) pp. 91-92.
  32. R. T. Chen, H. Nguyen, M. C. Wu, "A high-speed low-voltage stress-induced micromachined 2 $\times$ 2 optical switch," IEEE Photon. Technol. Lett. 11, 1396-1398 (1999).
  33. J.-N. Kuo, G.-B. Lee, W.-F. Pan, "A high-speed low-voltage double-switch optical crossconnect using stress-induced bending micromirrors," IEEE Photon. Technol. Lett. 16, 2042 (2004).
  34. L.-Y. Lin, E. L. Goldstein, R. W. Tkach, "On the expandability of free-space micromachined optical cross connects," J. Lightw. Technol. 18, 482-489 (2000).
  35. M. C. Wu, P. R. Patterson, MEMS: A Practical Guide to Design, Analysis, and Applications (William Andrew, 2005) pp. 345-402.
  36. P. M. Dobbelaere, S. Gloeckner, S. K. Patra, L. Fan, C. King, K. Falta, "Design, manufacture and reliability of 2-D MEMS optical switches," Proc. SPIE—Int. Soc. Opt. Eng. (2003) pp. 39-45.
  37. J. E. Fouquet, "Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lightwave circuit," Proc. Opt. Fiber Commun. Conf. Tech. Dig. Postconference Edition. Trends Opt. and Photon. (IEEE Cat. No. 00CH37079) (2000) pp. 204-206.
  38. T. Sakata, H. Togo, M. Makihara, F. Shimokawa, K. Kaneko, "Improvement of switching time in a thermocapillarity optical switch," J. Lightw. Technol. 19, 1023-1027 (2001).
  39. P. M. Hagelin, U. Krishnamoorthy, C. M. Arft, J. P. Heritage, O. Solgaard, "Scalable fiber optic switch using micromachined mirrors," Proc. Int. Conf. Solid-State Sens. and Actuators (Transducer) (1999) pp. 782-785.
  40. P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, O. Solgaard, "Scalable optical cross-connect switch using micromachined mirrors," IEEE Photon. Technol. Lett. 12, 882-884 (2000).
  41. R. R. A. Syms, "Scaling laws for MEMS mirror-rotation optical cross connect switches," J. Lightw. Technol. 20, 1084-1094 (2002).
  42. D. T. Neilson, R. Frahm, P. Kolodner, C. A. Bolle, R. Ryf, J. Kim, A. R. Papazian, C. J. Nuzman, A. Gasparyan, N. R. Basavanhally, V. A. Aksyuk, J. V. Gates, "256 $\times$ 256 port optical cross-connect subsystem," J. Lightw. Technol. 22, 1499-1509 (2004).
  43. T. Yamamoto, J. Yamaguchi, N. Takeuchi, A. Shimizu, E. Higurashi, R. Sawada, Y. Uenishi, "A three-dimensional MEMS optical switching module having 100 input and 100 output ports," IEEE Photon. Technol. Lett. 15, 1360-1362 (2003).
  44. M. Yano, F. Yamagishi, T. Tsuda, "Optical MEMS for photonic switching-compact and stable optical crossconnect switches for simple, fast, and flexible wavelength applications in recent photonic networks," IEEE J. Sel. Topics Quantum Electron. 11, 383-394 (2005).
  45. X. Zheng, V. Kaman, Y. Shifu, X. Yuanjian, O. Jerphagnon, K. Adrian, R. C. Anderson, H. N. Poulsen, L. Bin, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Topics Quantum Electron. 9, 571-578 (2003).
  46. A. Fernandez, B. P. Staker, W. E. Owens, L. P. Muray, J. P. Spallas, W. C. Banyai, "Modular MEMS design and fabrication for an 80 $\times$ 80 transparent optical cross-connect switch," Proc. SPIE—Int. Soc. Opt. Eng 5604, 208-217 (2004).
  47. J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, J. V. Gates, "1100 $\times$ 1100 port MEMS-based optical crossconnect with 4-dB maximum loss," IEEE Photon. Technol. Lett. 15, 1537-1539 (2003).
  48. R. Ryf, J. Kim, J. P. Hickey, A. Gnauck, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Basavanhally, C. Yoh, D. Ramsey, R. Boie, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H. R. Shea, A. Gasparyan, V. Muratov, J. E. Griffith, J. A. Prybyla, S. Goyal, C. D. White, M. T. Lin, R. Ruel, C. Nijander, S. Arney, D. T. Neilson, D. J. Bishop, P. Kolodner, S. Pau, C. J. Nuzman, A. Weis, B. Kumar, D. Lieuwen, V. Aksyuk, D. S. Greywall, T. C. Lee, H. T. Soh, W. M. Mansfield, S. Jin, W. Y. Lai, H. A. Huggins, D. L. Barr, R. A. Cirelli, G. R. Bogart, K. Teffeau, R. Vella, H. Mavoori, A. Ramirez, N. A. Ciampa, F. P. Klemens, M. D. Morris, T. Boone, J. Q. Liu, J. M. Rosamilia, C. R. Giles, "1296-port MEMS transparent optical crossconnect with 2.07 petabit/s switch capacity," Proc. OFC Tech. Dig. Postconference Edition. Postdeadline Papers (IEEE Cat. No. 01CH37171) (2001) pp. PD28-1-3.
  49. M. Kozhevnikov, N. R. Basavanhally, J. D. Weld, Y. L. Low, P. Kolodner, C. A. Bolle, R. Ryf, A. R. Papazian, A. Olkhovets, F. Pardo, J. Kim, D. T. Neilson, V. A. Aksyuk, J. V. Gates, "Compact 64 $\times$ 64 micromechanical optical cross connect," IEEE Photon. Technol. Lett. 15, 993-995 (2003).
  50. V. A. Aksyuk, S. Arney, N. R. Basavanhally, D. J. Bishop, C. A. Bolle, C. C. Chang, R. Frahm, A. Gasparyan, J. V. Gates, R. George, C. R. Giles, J. Kim, P. R. Kolodner, T. M. Lee, D. T. Neilson, C. Nijander, C. J. Nuzman, M. Paczkowski, A. R. Papazian, F. Pardo, D. A. Ramsey, R. Ryf, R. E. Scotti, H. Shea, M. E. Simon, "238 $\times$ 238 micromechanical optical cross connect," IEEE Photon. Technol. Lett. 15, 587 (2003).
  51. L. Fan, M. C. Wu, "Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator," Proc. IEEE/LEOS Summer Topical Meeting. Dig. Broadband Opt. Netw. and Technol.: An Emerging Reality. Opt. MEMS. Smart Pixels. Organic Opt. and Optoelectron. (Cat. No. 98TH8369) (1998) pp. 107-108.
  52. V. A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, R. Ryf, D. T. Neilson, J. Kim, C. R. Giles, D. Bishop, "Beam-steering micromirrors for large optical cross-connects," J. Lightw. Technol. 21, 634-642 (2003).
  53. D. S. Greywall, P. A. Busch, F. Pardo, D. W. Carr, G. Bogart, H. T. Soh, "Crystalline silicon tilting mirrors for optical cross-connect switches," J. Microelectromech. Syst. 12, 708-712 (2003).
  54. R. Sawada, J. Yamaguchi, E. Higurashi, A. Shimizu, T. Yamamoto, N. Takeuchi, Y. Uenishi, "Single Si crystal 1024 ch MEMS mirror based on terraced electrodes and a high-aspect ratio torsion spring for 3-D cross-connect switch," Proc. IEEE/LEOS Int. Conf. Optical MEMS (Cat. No. 02EX610) (2002) pp. 11-12.
  55. N. Kouma, O. Tsuboi, Y. Mizuno, H. Okuda, X. Mi, M. Iwaki, H. Soneda, S. Ueda, I. Sawaki, "A multi-step DRIE process for a 128 $\times$ 128 micromirror array," Proc. IEEE/LEOS Int. Conf. Opt. MEMS (Cat. No. 03EX682) (2003) pp. 53-54.
  56. T. D. Kudrle, C. C. Wang, M. G. Bancu, J. C. Hsiao, A. Pareek, M. Waelti, G. A. Kirkos, T. Shone, C. D. Fung, C. H. Mastrangelo, "Single-crystal silicon micromirror array with polysilicon flexures," Sens. Actuators A, Phys. 119, 559-566 (2005).
  57. S. D. Senturia, Microsystem Design (Springer-Verlag, 2004) pp. 130-138.
  58. J. Dadap, "Modular MEMS-based optical cross-connect with large port-count optical switch," IEEE Photon. Technol. Lett. 15, 1773-1775 (2003).
  59. R. A. Conant, J. T. Nee, K. Y. Lau, R. S. Muller, "A flat high-frequency scanning micromirror," Tech. Dig. Solid-State Sensor and Actuator Workshop (TRF Cat. No. 00TRF-0001) (2000) pp. 6-9.
  60. O. Tsuboi, Y. Mizuno, N. Kouma, H. Soneda, H. Okuda, S. Ueda, I. Sawaki, F. Yamagishi, Y. Nakamura, "A 2-axis comb-driven micromirror array for 3-D MEMS optical switch," Trans. Inst. Electr. Eng. Jpn. 123-E, 398-402 (2003).
  61. H. Obi, T. Yamanoi, H. Fujita, H. Toshiyoshi, "A new design for improving stability of electrostatic vertical comb mirrors and its application to fiber optic variable attenuators," Review Laser Eng. 33, 11766-771 (2005).
  62. U. Krishnamoorthy, L. Daesung, O. Solgaard, "Self-aligned vertical electrostatic combdrives for micromirror actuation," J. Microelectromech. Syst. 12, 458-464 (2003).
  63. K.-H. Jeong, L. P. Lee, "A novel microfabrication of a self-aligned vertical comb drive on a single SOI wafer for optical MEMS applications," J. Micromech. Microeng. 15, 277-281 (2005).
  64. W. Piyawattanametha, P. R. Patterson, D. Hah, H. Toshiyoshi, M. C. Wu, "Surface- and bulk- micromachined two-dimensional scanner driven by angular vertical comb actuators," J. Microelectromech. Syst. 14, 1329-1338 (2005).
  65. J. Kim, D. Christensen, L. Lin, "Monolithic 2-D scanning mirror using self-aligned angular vertical comb drives," IEEE Photon. Technol. Lett. 17, 2307-2309 (2005).
  66. M. Yoda, K. Isamoto, C. Chong, H. Ito, A. Murata, S. Kamisuki, M. Atobe, H. Toshiyoshi, "A MEMS 1-D optical scanner for laser projection display using self-assembled vertical combs and scan-angle magnifying mechanism," Proc. TRANSDUCERS—13th Int. Conf. Solid-State Sens., Actuators and Microsyst. Dig. Tech. Papers (IEEE Cat. No. 05TH8791) (2005) pp. 968-971.
  67. J. E. Ford, J. A. Walker, "Dynamic spectral power equalization using micro-opto-mechanics," IEEE Photon. Technol. Lett. 10, 1440-1442 (1998).
  68. J. E. Ford, K. W. Goossen, J. A. Walker, D. T. Neilson, D. M. Tennant, S. Y. Park, J. W. Sulhoff, "Interference-based micromechanical spectral equalizers," IEEE J. Sel. Topics Quantum Electron. 10, 579-587 (2004).
  69. K. W. Goossen, J. A. Walker, D. T. Neilson, J. E. Ford, W. H. Knox, "Micromechanical gain slope compensator for spectrally linear optical power equalization," IEEE Photon. Technol. Lett. 12, 831-833 (2000).
  70. C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, D. Bishop, "A silicon MEMS optical switch attenuator and its use in lightwave subsystems," IEEE J. Sel. Topics Quantum Electron. 5, 18-25 (1999).
  71. N. A. Riza, M. J. Mughal, "Broadband optical equalizer using fault-tolerant digital micromirrors," Opt. Express 11, 1559-1565 (2003).
  72. J. I. Trisnadi, C. B. Carlisle, R. J. Monteverde, "High-performance dynamic gain equalizer for advanced DWDM optical networks," Proc. SPIE (2002) pp. 101-105.
  73. J. J. Bernstein, M. R. Dokmeci, G. Kirkos, A. B. Osenar, J. Peanasky, A. Pareek, "MEMS tilt-mirror spatial light modulator for a dynamic spectral equalizer," J. Microelectromech. Syst. 13, 272-278 (2004).
  74. S. H. Oh, D. M. Marom, "Attenuation mechanism effect on filter shape in channelized dynamic spectral equalizers," Appl. Opt. 43, 127-131 (2004).
  75. D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. E. Simon, D. O. Lopez, D. M. Marom, S. Chandrasekhar, "MEMS-based channelized dispersion compensator with flat passbands," J. Lightw. Technol. 22, 101-105 (2004).
  76. J. E. Ford, J. A. Walker, V. Aksyuk, D. J. Bishop, "Wavelength-selectable add/drop with tilting micromirrors," IEEE Lasers and Electro-Optics Society Annu. Meeting San FranciscoCA (1997) Postdeadline Paper PD2.3.
  77. J. E. Ford, V. A. Aksyuk, D. J. Bishop, J. A. Walker, "Wavelength add-drop switching using tilting micromirrors," J. Lightw. Technol. 17, 904-911 (1999).
  78. J. K. Rhee, I. Tomkos, M. J. Li, "A broadcast-and-select OADM optical network with dedicated optical-channel protection," J. Lightw. Technol. 21, 25-31 (2003).
  79. D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, R. Ryf, "Channel equalization and blocking filter utilizing microelectromechanical mirrors," IEEE J. Sel. Topics Quantum Electron. 10, 563-569 (2004).
  80. D. M. Marom, D. T. Neilson, D. S. Greywall, P. Chien-Shing, N. R. Basavanhally, V. A. Aksyuk, D. O. Lopez, F. Pardo, M. E. Simon, Y. Low, P. Kolodner, C. A. Bolle, "Wavelength-selective $1 \times K$ switches using free-space optics and MEMS micromirrors: Theory, design, and implementation," J. Lightw. Technol. 23, 1620-1630 (2005).
  81. T. Ducellier, J. Bismuth, S. F. Roux, A. Gillet, C. Merchant, M. Miller, M. Mala, Y. Ma, L. Tay, J. Sibille, M. Alavanja, A. Deren, M. Cugalj, D. Ivancevic, V. Dhuler, E. Hill, A. Cowen, B. Shen, R. Wood, "The MWS 1 $\times$ 4: A high performance wavelength switching building block," Proc. ECOC (2002) pp. 1-2.
  82. J. Tsai, S. Huang, D. Hah, H. Toshiyoshi, M. C. Wu, "Open-loop operation of MEMS-based $1 \times N$ wavelength-selective switch with long-term stability and repeatability," IEEE Photon. Technol. Lett. 16, 1041 (2004).
  83. D. S. Greywall, P. Chien-Shing, O. Sang-Hyun, C. Chorng-Ping, D. M. Marom, P. A. Busch, R. A. Cirelli, J. A. Taylor, F. P. Klemens, T. W. Sorsch, J. E. Bower, W.-C. Lai, H. T. Soh, "Monolithic fringe-field-activated crystalline silicon tilting-mirror devices," J. Microelectromech. Syst. 12, 702-707 (2003).
  84. D. Hah, H. S.-Y. Huang, J.-C. Tsai, J.-C. Toshiyoshi, M. C. Wu, "Low-voltage, large-scan angle MEMS analog micromirror arrays with hidden vertical comb-drive actuators," J. Microelectromech. Syst. 13, 279-289 (2004).
  85. W. P. Taylor, J. D. Brazzle, A. B. Osenar, C. J. Corcoran, I. H. Jafri, D. Keating, G. Kirkos, M. Lockwood, A. Pareek, J. J. Bernstein, "A high fill factor linear mirror array for a wavelength selective switch," J. Micromech. Microeng. 14, 147-152 (2004).
  86. J. Tsai, H. Sophia Ting-Yu, D. Hah, M. C. Wu, "$1 \times {\rm N}^{2}$ wavelength-selective switch with two cross-scanning one-axis analog micromirror arrays in a 4-f optical system," J. Lightw. Technol. 24, 897-903 (2006).
  87. J. C. Tsai, M. C. Wu, "A high port-count wavelength-selective switch using a large scan-angle, high fill-factor, two-axis MEMS scanner array," IEEE Photon. Technol. Lett. 18, 1439 (2006).
  88. J.-C. Tsai, L. Fan, C.-H. Chi, D. Hah, M. C. Wu, "A large port-count 1 $\times$ 32 wavelength-selective switch using a large scan-angle, high fill-factor, two-axis analog micromirror array," Proc. 30th ECOC (2004) pp. 152-153.
  89. J. Tsai, M. C. Wu, "Gimbal-less MEMS two-axis optical scanner array with high fill-factor," J. Microelectromech. Syst. 14, 1323 (2005).
  90. J.-C. Tsai, L. Fan, D. Hah, M. C. Wu, "A high fill-factor, large scan-angle, two-axis analog micromirror array driven by leverage mechanism," IEEE/LEOS Int. Conf. Optical MEMS and Applications TakamatsuJapan (2004).
  91. V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, J. E. Bowers, "A 32 $\times$ 10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs," IEEE Photon. Technol. Lett. 17, 1977-1979 (2005).
  92. R. Ryf, P. Bernasconi, P. Kolodner, J. Kim, J. P. Hickey, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Basavanhally, C. Yoh, D. Ramsey, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H. R. Shea, A. Gasparyan, V. Muratov, J. E. Griffith, J. A. Prybyla, S. Goyal, C. D. White, M. T. Lin, R. Ruel, C. Nijander, S. Amey, D. T. Neilson, D. J. Bishop, S. Pau, C. Nuzman, A. Weis, B. Kumar, D. Lieuwen, V. Aksyuk, D. S. Greywall, T. C. Lee, H. T. Soh, W. M. Mansfield, S. Jin, W. Y. Lai, H. A. Huggins, D. L. Barr, R. A. Cirelli, G. R. Bogart, K. Teffeau, R. Vella, H. Mavoori, A. Ramirez, N. A. Ciampa, F. P. Klemens, M. D. Morris, T. Boone, J. Q. Liu, J. M. Rosamilia, C. R. Giies, "Scalable wavelength-selective crossconnect switch based on MEMS and planar waveguides," Proc. IEEE—Post-Deadline Papers. 27th Eur. Conf. Opt. Commun. (Cat. No. 01TH8551) (2001) pp. 76-77.
  93. A. R. Pratt, B. Charbonnier, P. Harper, D. Nesset, B. K. Nayar, N. J. Doran, "40/spl times/10.7 Gb/s DWDM transmission over a meshed ULH network with dynamically re-configurable optical cross connects," Opt. Fiber Commun. Conf. (OFC) AtlantaGA (2003) Paper PD9.
  94. D. M. Marom, D. T. Neilson, J. Leuthold, M. A. Gibbons, C. R. Giles, "64 channel 4 $\times$ 4 wavelength-selective cross-connect for 40 Gb/s channel rates with 10 Tb/s throughput capacity," Eur. Conf. Opt. Commun. (ECOC) RiminiItaly (2003) We4.P.130.
  95. J. H. Jerman, S. R. Mallinson, "A miniature Fabry–Perot interferometer fabricated using silicon micromachining techniques," Proc. Solid State Sensor and Actuator Workshop Tech. Dig. (1988) pp. 16-18.
  96. A. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, E. Mozdy, "Surface micromachined Fabry–Perot tunable filter," IEEE Photon. Technol. Lett. 8, 393-395 (1996).
  97. K. Cao, W. Liu, J. J. Talghader, "Curvature compensation in micromirrors with high-reflectivity optical coatings," J. Microelectromech. Syst. 10, 409-417 (2001).
  98. E. C. Vail, M. S. Wu, G. S. Li, L. Eng, C. J. Chang-Hasnain, "GaAs micromachined widely tunable Fabry–Pérot filters," Electron. Lett. 31, 228-229 (1995).
  99. M. C. Larson, B. Pezeshki, J. S. Harris, "Vertical coupled-cavity microinterferometer on GaAs with deformable-membrane top mirror," IEEE Photon. Technol. Lett. 7, 382-384 (1995).
  100. A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, "Highly selective and widely tunable 1.55-$\mu \hbox{m}$ InP/air-gap micromachined Fabry–Pérot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
  101. P. Tayebati, P. Wang, M. Azimi, L. Maflah, D. Vakhshoori, "Microelectromechanical tunable filter with stable half symmetric cavity," Electron. Lett. 34, 1967-1968 (1998).
  102. M. Garrigues, J. Danglot, J. L. Leclercq, O. Parillaud, "Tunable high-finesse InP/Air MOEMS filter," IEEE Photon. Technol. Lett. 17, 1471-1473 (2005).
  103. C. J. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Topics Quantum Electron. 6, 978-987 (2000).
  104. D. Hohlfeld, H. Zappe, "An all-dielectric tunable optical filter based on the thermo-optic effect," J. Opt. A, Pure Appl. Opt. 6, 504-511 (2004).
  105. F. Gires, P. Tournois, "Interferometer utilizable pour la compression d'impulsions lumineuses modules en frequence," C.R. Acad. Sci. 258, 6112-6115 (1964).
  106. C. K. Madsen, J. A. Walker, J. E. Ford, K. W. Goossen, T. N. Nielsen, G. Lenz, "A tunable dispersion compensating MEMS all-pass filter," IEEE Photon. Technol. Lett. 12, 651-653 (2000).
  107. K. Yu, A. Solgaard, "MEMS optical wavelength deinterleaver with continuously variable channel spacing and center wavelength," IEEE Photon. Technol. Lett. 15, 425-427 (2003).
  108. K. Yu, O. Solgaard, "Tunable optical transversal filters based on a Gires–Tournois interferometer with MEMS phase shifters," IEEE J. Sel. Topics Quantum Electron. 10, 588-597 (2004).
  109. K. Yu, O. Solgaard, "Tunable chromatic dispersion compensators using MEMS Gires–Tournois interferometers," Proc. IEEE/LEOS Int. Conf. Opt. MEMS (2002) pp. 181-182.
  110. O. Manzardo, H. P. Herzig, C. R. Marxer, N. F. de Rooij, "Miniaturized time-scanning Fourier transform spectrometer based on silicon technology," Opt. Lett. 24, 1705-1707 (1999).
  111. D. Knipp, H. Stiebig, S. R. Bhalotra, E. Bunte, H. L. Kung, D. A. B. Miller, "Silicon-based micro-Fourier spectrometer," IEEE Trans. Electron Devices 52, 419-426 (2005).
  112. S. D. Collins, R. L. Smith, C. Gonzalez, K. P. Stewart, J. G. Hagopian, J. M. Sirota, "Fourier-transform optical microsystems," Opt. Lett. 24, 844-846 (1999).
  113. K. Yu, D. Lee, U. Krishnamoorthy, N. Park, O. Solgaard, "Micromachined Fourier transform spectrometer on silicon optical bench platform," Sens. Actuators A, Phys. 130–131, 523-530 (2006).
  114. O. Manzardo, R. Michaely, F. Schadelin, W. Noell, T. Overstolz, N. De Rooij, H. P. Herzig, "Miniature lamellar grating interferometer based on silicon technology," Opt. Lett. 29, 1437-1439 (2004).
  115. H. L. Kung, S. R. Bhalotra, J. D. Mansell, B. Miller, J. S. Harris, "Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector," IEEE J. Sel. Topics Quantum Electron. 8, 98-105 (2002).
  116. R. A. DeVerse, R. M. Hammaker, W. G. Fateley, "Realization of the Hadamard multiplex advantage using a programmable optical mask in a dispersive flat-field near-infrared spectrometer," Appl. Spectrosc. 54, 1751-1758 (2000).
  117. J. P. Heritage, A. M. Weiner, R. N. Thurston, "Picosecond pulse shaping by spectral phase and amplitude manipulation," Opt. Lett. 10, 609-611 (1985).
  118. A. M. Weiner, J. P. Heritage, J. A. Salehi, "Encoding and decoding of femtosecond pulses," Opt. Lett. 13, 300-302 (1988).
  119. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
  120. Y. T. Pan, H. K. Xie, G. K. Fedder, "Endoscopic optical coherence tomography based on a microelectromechanical mirror," Opt. Lett. 26, 1966-1968 (2001).
  121. K. T. Cornett, P. M. Hagelin, J. P. Heritage, O. Solgaard, M. Everett, "Miniature variable optical delay using silicon micromachined scanning mirrors," Proc. CLEO pp. 383-384.
  122. O. Solgaard, F. S. A. Sandejas, D. M. Bloom, "Deformable grating optical modulator," Opt. Lett. 17, 688-690 (1992).
  123. R. Apte, F. Sandejas, W. Banyai, D. Bloom, "Grating light valves for high resolution displays," Proc. Solid-State Sensors and Actuators Workshop (1994) pp. 1-6.
  124. S. Kubota, "The grating light valve projector," Optics Photonics News 13, 50-53 (2002).
  125. G. G. Yaralioglu, A. Atalar, S. R. Manalis, C. F. Quate, "Analysis and design of an interdigital cantilever as a displacement sensor," J. Appl. Phys. 83, 7405-7415 (1998).
  126. N. C. Loh, M. A. Schmidt, S. R. Manalis, "Sub-10 cm(3) interferometric accelerometer with nano-g resolution," J. Microelectromech. Syst. 11, 182-187 (2002).
  127. C. A. Savran, T. P. Burg, J. Fritz, S. R. Manalis, "Microfabricated mechanical biosensor with inherently differential readout," Appl. Phys. Lett. 83, 1659-1661 (2003).
  128. N. A. Hall, F. L. Degertekin, "Self-calibrating micromachined microphone with integrated optical displacement detection," Proc. Transducer (2001) pp. 118-121.
  129. T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, P. Norton, "Infrared vision using uncooled microoptomechanical camera," Appl. Phys. Lett. 74, 3567-3569 (1999).
  130. M. B. Sinclair, M. A. Butler, A. J. Ricco, S. D. Senturia, "Synthetic spectra: A tool for correlation spectroscopy," Appl. Opt. 36, 3342-3348 (1997).
  131. R. Belikov, X. Li, O. Solgaard, "Programmable optical wavelength filter based on diffraction from a 2 D MEMS micromirror array," Proc. CLEO, Tech. Dig. (2003).
  132. R. Belikov, C. Antoine-Snowden, O. Solgaard, "Femtosecond direct space-to-time pulse shaping with MEMS micromirror arrays," Proc. IEEE/LEOS Int. Conf. Opt. MEMS (2003) pp. 24-25.
  133. T. G. Bifano, J. Perreault, R. K. Mali, M. N. Horenstein, "Microelectromechanical deformable mirrors," IEEE J. Sel. Topics Quantum Electron. 5, 83-89 (1999).
  134. R. Belikov, O. Solgaard, "Optical wavelength filtering by diffraction from a surface relief," Opt. Lett. 28, 447-449 (2003).
  135. R. Belikov, Diffraction-based optical filtering: Theory and implementation with MEMS Ph.D. dissertation Stanford Univ.StanfordCA (2005).
  136. G. B. Hocker, "The polychromator: A programmable MEMS diffraction grating for synthetic spectra," Proc. Tech. Dig., Solid-State Sensor and Actuator Workshop (2000) pp. 89-92.
  137. M. A. Butler, E. R. Deutsch, S. D. Senturia, M. B. Sinclair, W. C. Sweatt, D. W. Youngner, G. B. Hocker, "A MEMS based programmable diffraction grating for optical holography in the spectral domain," Proc. IEDM (2001) pp. 909-912.
  138. H. Sagberg, M. Lacolle, I.-R. Johansen, O. Løvhaugen, R. Belikov, O. Solgaard, A. Sudbø, "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE J. Sel. Topics Quantum Electron. 10, 604-613 (2004).
  139. X. Li, C. Antoine, D. Lee, J.-S. Wang, O. Solgaard, "Tunable blazed gratings," J. Microelectromech. Syst. 13, 597-604 (2006).
  140. C. Antoine, X. Li, J.-S. Wang, O. Solgaard, "A reconfigurable optical demultiplexer based on a MEMS deformable blazed grating," Proc. IEEE/LEOS Int. Conf. Opt. MEMS (2006) pp. 183-184.
  141. M. G. Littman, H. J. Metcalf, "Spectrally narrow pulsed dye laser without a beam expander," Appl. Opt. 17, 2224-2227 (1978).
  142. W. R. Trutna, L. F. Stokes, "Continuously tuned external-cavity semiconductor-laser," J. Lightw. Technol. 11, 1279-1286 (1993).
  143. R. R. A. Syms, A. Lohmann, "MOEMS tuning element for a Littrow external cavity laser," J. Microelectromech. Syst. 12, 921-928 (2003).
  144. X. M. Zhang, A. Q. Liu, C. Lu, D. Y. Tang, "Continuous wavelength tuning in micromachined Littrow external-cavity lasers," IEEE J. Quantum Electron. 41, 187-197 (2005).
  145. W. Huang, R. R. A. Syms, J. Stagg, A. Lohmann, "Precision MEMS flexure mount for a Littman tunable external cavity laser," Proc. IEE—Sci. Meas. and Technol. (2004) pp. 67-75.
  146. R. Belikov, C. Antoine-Snowden, O. Solgaard, "Tunable external cavity laser with a stationary deformable MEMS grating," Conf. Lasers and Electro-Optics (CLEO) San FranciscoCA (2004) Paper CWL3.
  147. H. Jerman, J. D. Grade, "A mechanically-balanced, DRIE rotary actuator for a high-power tunable laser," Proc. Solid-State Sensors and Actuators Workshop (2002) pp. 7-10.
  148. D. Anthon, D. King, J. D. Berger, S. Dutta, A. Tselikov, "Mode-hop free sweep tuning of a MEMS tuned external cavity semiconductor laser," Conf. Lasers and Electro-Optics (CLEO) San FranciscoCA (2004) Paper CWL2.
  149. B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, T. Razazan, "20-mW widely tunable laser module using DFB array and MEMS selection," IEEE Photon. Technol. Lett. 14, 1457-1459 (2002).
  150. K. Okamoto, M. Okuno, A. Himeno, Y. Ohmori, "16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches," Electron. Lett. 32, 1471-1472 (1996).
  151. C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, G. Richards, "Wavelength add-drop node using silica waveguide integration," J. Lightw. Technol. 22, 2755-2762 (2004).
  152. D. M. Marom, C. R. Doerr, N. R. Basavanhally, M. Cappuzzo, L. Gomez, E. Chen, A. Wong-Foy, E. Laskowski, "Wavelength-selective 1 $\times$ 2 switch utilizing a planar lightwave circuit stack and a MEMS micromirror array," IEEE/LEOS Optical MEMS KagawaJapan (2004) Paper C-1.
  153. D. M. Marom, C. R. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, "Hybrid free-space and planar lightwave circuit wavelength-selective 1 $\times$ 3 switch with integrated drop-side demultiplexer," Proc. 31st Eur. Conf. Opt. Commun. (2005) pp. 993-994.
  154. T. Ducellier, A. Hnatiw, M. Mala, S. Shaw, A. Mank, D. Touahri, D. McMullin, T. Zami, B. Lavigne, P. Peloso, O. Leclerc, "Novel high performance hybrid waveguide-MEMS 1 $\times$ 9 wavelength selective switch in a 32-cascade loop experiment," Eur. Conf. Opt. Commun. (ECOC) StockholmSweden (2004) Paper Th4.2.2.
  155. D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photon. Technol. Lett. 16, 99-101 (2004).
  156. D. M. Marom, C. R. Doerr, M. A. Cappuzzo, C. Evans Yifan, A. Wong-Foy, L. T. Gomez, S. Chandrasekhar, "Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-gb/s data rates," J. Lightw. Technol. 24, 237-241 (2006).
  157. M. Kozhevnikov, P. Kolodner, D. T. Neilson, A. R. Papazian, R. E. Frahm, J. V. Gates, "Integrated array of $1 \times N$ optical switches for wavelength-independent and WDM applications," J. Lightw. Technol. 24, 884-890 (2006).
  158. C.-H. Chi, J. Yao, J.-C. Tsai, M. C. Wu, K. Okamoto, "Compact 1 $\times$ 8 MEMS optical switches using planar lightwave circuits," Opt. Fiber Commun. Conf., (OFC) Los AngelesCA (2004) Paper THQ4.
  159. C. H. Chi, J. Tsai, M. C. Lee, D. Hah, M. C. Wu, "Integrated 1 $\times$ 4 wavelength-selective switch with on-chip MEMS micromirrors," Proc. CLEO (2005) pp. 1732-1743.
  160. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Topics Quantum Electron. 4, 938 (1998).
  161. C.-H. Chi, J.-C. Tsai, D. Hah, S. Mathai, M. C. M. Lee, M. C. Wu, "Silicon-based monolithic 4 $\times$ 4 wavelength-selective cross connect with on-chip micromirrors," Proc. Opt. Fiber Commun. Conf. (2006).
  162. B. E. Little, S. T. Chu, W. Pan, Y. Kokubun, "Microring resonator arrays for VLSI photonics," IEEE Photon. Technol. Lett. 12, 323-325 (2000).
  163. C. K. Madsen, G. Lent, A. T. Bruce, M. A. Capuzzo, L. T. Gomez, T. N. Nielsen, I. Brener, "Multistage dispersion compensator using ring resonators," Opt. Lett. 24, 1555-1557 (1999).
  164. X. Qianfan, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
  165. C. Seung June, K. Djordjev, C. Sang Jun, P. D. Dapkus, "Microdisk lasers vertically coupled to output waveguides," IEEE Photon. Technol. Lett. 15, 1330-1332 (2003).
  166. M. Lipson, "Guiding, modulating, and emitting light on silicon-challenges and opportunities," J. Lightw. Technol. 23, 4222-4238 (2005).
  167. M. C. Lee, M. C. Wu, "MEMS-actuated microdisk resonators with variable power coupling ratios," IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
  168. M.-C. M. Lee, M. C. Wu, "Tunable coupling regimes of silicon microdisk resonators using MEMS actuators," Opt. Express 14, 4703-4712 (2006).
  169. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, G. Barbastathis, "Integrated wavelength-selective optical MEMS switching using ring resonator filters," IEEE Photon. Technol. Lett. 17, 1190-1192 (2005).
  170. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
  171. D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, A. Driessen, "Compact wavelength-selective switch for gigabit filtering in access networks," IEEE Photon. Technol. Lett. 17, 336-338 (2005).
  172. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, C. H. Lee, "Lightwave switching in semiconductor microring devices by free carrier injection," J. Lightw. Technol. 21, 2997-3003 (2003).
  173. K. Djordjev, C. Seung-June, C. Sang-Jun, P. D. Dapkus, "Vertically coupled InP microdisk switching devices with electroabsorptive active regions," IEEE Photon. Technol. Lett. 14, 1115-1117 (2002).
  174. K. Djordjev, C. Seung-June, C. Sang-Jun, P. D. Dapkus, "Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches," Appl. Phys. Lett. 80, 3467-3469 (2002).
  175. M. C. Lee, M. C. Wu, "Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction," J. Microelectromech. Syst. 15, 338-343 (2006).
  176. M.-C. M. Lee, M. C. Wu, "Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators," Opt. Lett. 31, 2444-2446 (2006).
  177. S. H. Fan, J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B, Condens. Matter 65, 23 512 (2002).
  178. C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
  179. O. Kilic, S. Kim, W. Suh, Y. A. Peter, A. S. Sudbo, M. F. Yanik, S. H. Fan, O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders," Opt. Lett. 29, 2782-2784 (2004).
  180. L. Chen, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, Y. Suzuki, "Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror," Appl. Phys. Lett. 88, 31 102 (2006).
  181. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, S. H. Fan, "Angular and polarization properties of a photonic crystal slab mirror," Opt. Express 12, 1575-1582 (2004).
  182. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. H. Fan, O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B, Condens. Matter 73, 115 126 (2006).
  183. E. Bisaillon, D. Tan, B. Faraji, A. G. Kirk, L. Chrowstowski, D. V. Plant, "High reflectivity air-bridge subwavelength grating reflector and Fabry–Pérot cavity in AlGaAs/GaAs," Opt. Express 14, 2573-2582 (2006).
  184. W. Park, J. B. Lee, "Mechanically tunable photonic crystal structure," Appl. Phys. Lett. 85, 4845-4847 (2004).
  185. X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, P. Viktorovitch, "Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures," J. Lightw. Technol. 21, 1691-1699 (2003).
  186. I. Marki, M. Salt, S. Gautsch, U. Staufer, H. P. Herzig, N. D. Rooij, "Tunable microcavities in two dimensional photonic crystal waveguides," Proc. IEEE/LEOS Optical MEMs (2005) pp. 109-110.
  187. I. Marki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, J. M. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 513-515 (2006).
  188. M. C. M. Lee, D. Y. Hah, E. K. Lau, H. Toshiyoshi, M. Wu, "MEMS-actuated photonic crystal switches," IEEE Photon. Technol. Lett. 18, 358-360 (2006).
  189. S. Iwamoto, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, Y. Arakawa, "Optical switching in photonic crystal waveguide controlled by micro electro mechanical system," Proc. CLEO/Pacific Rim (2005) pp. 233-234.
  190. W. Suh, M. F. Yanik, O. Solgaard, S. H. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
  191. W. Suh, O. Solgaard, S. Fan, "Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs," J. Appl. Phys. 98, 33 102 (2005).
  192. D. W. Carr, J. P. Sullivan, T. A. Friedmann, "Laterally deformable nanomechanical zeroth-order gratings: Anomalous diffraction studies by rigorous coupled-wave analysis," Opt. Lett. 28, 1636-1638 (2003).
  193. B. E. N. Keeler, D. W. Carr, J. P. Sullivan, T. A. Friedmann, J. R. Wendt, "Experimental demonstration of a laterally deformable optical nanoelectromechanical system grating transducer," Opt. Lett. 29, 1182-1184 (2004).
  194. J. Provine, J. Skinner, D. A. Horsley, "Subwavelength metal grating tunable filter," Tech. Dig. IEEE Int. Conf. MEMS (2006) pp. 854-857.
  195. S. Nagasawa, T. Onuki, Y. Ohtera, H. Kuwano, "MEMS tunable optical filter using auto-cloned photonic crystal," Tech. Dig. 19th IEEE Int. Conf. MEMS (2006) pp. 858-861.
  196. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, Y. Ohmori, "Low loss and high extinction ratio strictly nonblocking 16 $\times$ 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology," J. Lightw. Technol. 19, 371-379 (2001).
  197. T. Watanabe, T. Goh, M. Okuno, S. Sohma, T. Shibata, M. Itoh, M. Kobayashi, M. Ishii, A. Sugita, Y. Hibino, "Silica-based PLC 1 $\times$ 128 thermo-optic switch," Proc. 27th Eur. Conf. Opt. Commun. (Cat. No. 01TH8551) (2001) pp. 134-135.
  198. S. Thaniyavarn, J. Lin, W. Dougherty, T. Traynor, K. Chiu, G. Abbas, M. LaGasse, W. Charczenko, M. Hamilton, "Compact, low insertion loss 16 $\times$ 16 optical switch-array modules," Proc. OFC (1997) pp. 5-6.
  199. G. Baxter, S. Frisken, D. Abakoumov, Z. Hao, I. Clarke, A. Bartos, S. Poole, "Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements," Proc. IEEE OFC/NFOEC (2006) pp. 3.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited