OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4493–4501

Advances in Theory of Photonic Crystals

Shanhui Fan, Mehmet Fatih Yanik, Zheng Wang, Sunil Sandhu, and Michelle L. Povinelli

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4493-4501 (2006)


View Full Text Article

Acrobat PDF (1179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, the authors review some of the recent advances in the theory of photonic crystals, drawing examples from their own work in magnetooptical and dynamic photonic crystals. The combination of theory and simulations shows that these crystal structures exhibit rich optical physics effects and can provide new ways to accomplish sophisticated optical information-processing tasks.

© 2006 IEEE

Citation
Shanhui Fan, Mehmet Fatih Yanik, Zheng Wang, Sunil Sandhu, and Michelle L. Povinelli, "Advances in Theory of Photonic Crystals," J. Lightwave Technol. 24, 4493-4501 (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-12-4493


Sort:  Journal  |  Reset

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
  4. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
  5. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, "Photonic crystals: Putting a new twist on light," Nature 386, 143-147 (1997).
  6. Photonic Crystals and Light Localization in the 21st Century (Kluwer, 2001).
  7. S. G. Johnson, J. D. Joannopoulos, Photonic Crystals: The Road From Theory to Practice (Kluwer, 2002).
  8. K. Inoue, K. Ohtaka, Photonic Crystals (Springer-Verlag, 2004).
  9. Z. Wang, S. Fan, "Magneto-optical defects in two-dimensional photonic crystals," Appl. Phys. B, Photophys. Laser Chem. 81, 369-375 (2005).
  10. Z. Wang, S. Fan, "Optical circulators in two-dimensional magneto-optical photonic crystals," Opt. Lett. 30, 1989-1991 (2005).
  11. Z. Wang, S. Fan, "Add–drop filter in two-dimensional magneto-optical photonic crystals and suppression of disorder effects by time-reversal breaking," Photon. Nanostruct.: Fundam. Appl (in press).
  12. M. F. Yanik, S. Fan, "Stopping light all-optically," Phys. Rev. Lett. 92, 083901 (2004).
  13. M. F. Yanik, S. Fan, "Time-reversal of light with linear optics and modulators," Phys. Rev. Lett. 93, 173 903 (2004).
  14. M. F. Yanik, W. Suh, Z. Wang, S. Fan, "Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233 903 (2004).
  15. M. F. Yanik, S. Fan, "Stopping and storing light coherently," Phys. Rev. A, Gen. Phys. 71, 013803 (2005).
  16. M. F. Yanik, S. Fan, "Dynamic photonic structures: Stopping, storage, and time-reversal of light," Stud. Appl. Math. 115, 233-254 (2005).
  17. S. Sandhu, M. L. Povinelli, M. F. Yanik, S. Fan, "Dynamically-tuned coupled resonator delay lines can be nearly dispersion free," Opt. Lett. 31, 1985-1987 (2006).
  18. M. Levy, "The on-chip integration of magneto-optic waveguide isolators," IEEE J. Sel. Topics Quantum Electron. 8, 1300-1306 (2002).
  19. R. L. Espinola, T. Izuhara, M. Tsai, R. M. Osgood, H. Dotsch, "Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulators waveguides," Opt. Lett. 29, 941-943 (2004).
  20. H. Yokoi, Y. Shoji, E. Shin, T. Mizumoto, "Interferometric optical isolator employing a non-reciprocal phase shift operated in a uni-directional magnetic field," Appl. Opt. 43, 4745-4752 (2004).
  21. M. Inoue, K. Arai, T. Fujii, M. Abe, "One-dimensional magnetophotonic crystals," J. Appl. Phys. 85, 5768-5770 (1999).
  22. E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, K. Arai, "Faraday effect enhancement in co-ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Pérot resonator," J. Appl. Phys. 87, 6782-6784 (2000).
  23. M. J. Steel, M. Levy, R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystal with defects," IEEE Photon. Technol. Lett. 12, 1171-1173 (2000).
  24. A. Figotin, I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 63, 066609 (2001).
  25. A. Figotin, I. Vitebskiy, "Electromagnetic unidirectionality in magnetic photonic crystals," Phys. Rev. B, Condens. Matter 67, 165 210 (2003).
  26. A. A. Jalali, A. T. Friberg, "Faraday rotation in a two-dimensional photonic crystal with a magnetooptic defect," Opt. Lett. 30, 1213-1215 (2005).
  27. R. Li, M. Levy, "Bragg grating magnetic photonic crystal waveguides," Appl. Phys. Lett. 86, 251 102 (2005).
  28. Y. Ikezawa, K. Nishimura, H. Uchida, M. Inoue, "Preparation of two-dimensional magneto-photonic crystals of bismuth substitute yttrium iron garnet materials," J. Magn. Magn. Mater. 272–276, 1690-1691 (May 2004).
  29. K. Nishimura, A. V. Baryshev, T. Kodama, H. Uchida, M. Inoue, "Synthesis of ferrite on $\hbox{SiO}_{2}$ sphere for three-dimensional magneto-photonic crystals," J. Appl. Phys. 95, 6633-6635 (2004).
  30. C. Koerdt, G. L. J. A. Rikken, E. P. Petrov, "Faraday effect of photonic crystals," Appl. Phys. Lett. 82, 1538-1540 (2003).
  31. A. K. Zvezdin, V. I. Belotelov, "Magneto-optical properties of two dimensional photonic crystals," Eur. Phys. J. B 37, 479-487 (2004).
  32. N. Kono, Y. Tsuji, "A novel finite-element method for nonreciprocal magneto-photonic crystal waveguides," J. Lightw. Technol. 22, 1741-1747 (2004).
  33. N. Kono, M. Koshiba, "General finite-element modeling of 2-D magneto-photonic crystal waveguides," IEEE Photon. Technol. Lett. 17, 1432-1434 (2005).
  34. S. K. Mondal, B. J. H. Stadler, "Novel designs for integrating YIG/air photonic crystal slab polarizers with waveguide Faraday rotators," IEEE Photon. Technol. Lett. 17, 127-129 (2005).
  35. N. Kono, M. Koshiba, "Three-dimensional finite-element analysis of non-reciprocal phase shifts in magneto-photonic crystal waveguides," Opt. Express 13, 9155 (2005).
  36. A. K. Zvezdin, V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Inst. Phys., 1997).
  37. S. G. Johnson, J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
  38. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
  39. D. Psaltis, "Coherent optical information systems," Science 298, 1359-1363 (2002).
  40. C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
  41. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, M. D. Lukin, "Storage of light in atomic vapors," Phys. Rev. Lett. 86, 783-786 (2001).
  42. E. J. Reed, M. Soljacic, J. D. Joannopoulos, "Color of shock waves in photonic crystals," Phys. Rev. Lett. 90, 203 904 (2003).
  43. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokoyama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253 902 (2001).
  44. N. Stefanou, A. Modinos, "Impurity bands in photonic insulators," Phys. Rev. B, Condens. Matter 57, 12127-12133 (1998).
  45. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711-713 (1999).
  46. M. Bayindir, B. Temelkuran, E. Ozbay, "Tight-binding description of the coupled defect modes in three-dimensional photonic crystals," Phys. Rev. Lett. 84, 2140-2143 (2000).
  47. Y. A. Vlasov, M. O'Boyle, H. F. Harmann, S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
  48. G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, "Optical delay lines based on optical filters," IEEE J. Quantum Electron. 37, 525-532 (2001).
  49. Z. Wang, S. Fan, "Compact all-pass filters in photonic crystals as the building block for high capacity optical delay lines," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 68, 066616 (2003).
  50. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).
  51. S. Fan, "Sharp asymmetric lineshapes in side-coupled waveguide–cavity systems," Appl. Phys. Lett. 80, 908-910 (2002).
  52. S. Fan, W. Suh, J. D. Joannopoulos, "Temporal coupled mode theory for Fano resonances in optical resonators," J. Opt. Soc. Amer. A, Opt. Image Sci. 20, 569-572 (2003).
  53. W. Suh, Z. Wang, S. Fan, "Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities," IEEE J. Quantum Electron. 40, 1511-1518 (2004).
  54. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
  55. L. Maleki, A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, "Tunable delay line with interacting whispering-gallery-mode resonators," Opt. Lett. 29, 626-628 (2004).
  56. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, C. Manalatou, M. J. Khan, H. A. Haus, "Theoretical investigation of channel drop tunneling processes," Phys. Rev. B, Condens. Matter 59, 15 882-15 892 (1999).
  57. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123 901 (2006).
  58. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited