OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4568–4583

Fiber to the Home Using a PON Infrastructure

Chang-Hee Lee, Wayne V. Sorin, and Byoung Yoon Kim

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4568-4583 (2006)


View Full Text Article

Acrobat PDF (1424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Traffic patterns in access networks have evolved from voice- and text-oriented services to video- and image-based services. This change will require new access networks that support high-speed (> 100 Mb/s), symmetric, and guaranteed bandwidths for future video services with high-definition TV quality. To satisfy the required bandwidth over a 20-km transmission distance, single-mode optical fiber is currently the only practical choice. To minimize the cost of implementing an FTTP solution, a passive optical network (PON) that uses a point-to-multipoint architecture is generally considered to be the best approach. There are several multiple-access techniques to share a single PON architecture, and the authors addressed several of these approaches such as time-division multiple access, wavelength-division multiple access, subcarrier multiple access, and code-division multiple access. Among these multiple techniques, they focus on time-division multiplexing (TDM)-PON and wavelength-division multiplexing (WDM)-PON, which will be the most promising candidates for practical future systems. A TDM-PON shares a single-transmission channel with multiple subscribers in time domain. Then, there exists tight coupling between subscribers. A WDM-PON provides point-to-point optical connectivity using a dedicated pair of wavelengths per user. While a TDM-PON appears to be a satisfactory solution for current bandwidth demands, the combination of future data-rate projections and traffic patterns coupled with recent advances in WDM technology may result in WDM-PON becoming the preferred solution for a future proof fiber-based access network.

© 2006 IEEE

Citation
Chang-Hee Lee, Wayne V. Sorin, and Byoung Yoon Kim, "Fiber to the Home Using a PON Infrastructure," J. Lightwave Technol. 24, 4568-4583 (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-12-4568


Sort:  Journal  |  Reset

References

  1. K. Cho, K. Fukuda, H. Esaki, A. Kato, "The impact and implication of the growth in residential user-to-user traffic," Proc. ACM/SIGCOMM (SIGCOMM2006) (2006) pp. 207-218.
  2. J. Halpern, G. Garceau, Fiber: Revolutionizing the Bell's Telecom Networks (Bernstein/Telcordia Technologies Study, 2004).
  3. C. Ollivry, Why fiber? Why now? (FTTH Council Europe, 2004).
  4. D. Chrissan, "Uni-DSLT: One DSL for universal service," Texas Instruments White Paper (Spay018) (2004).
  5. P. Garvey, "Economics of FTTx in municipality overbuilds," OSP (Outside Plant) Expo Technical Presentation (2005).
  6. Fiber-to-the-Home Council and Telecommunications Industry Association Release Updated (U.S. Optical Fiber Communities) List ArlingtonVATelecommun. Industry Assoc. http://www.tiaonline.org/business/media/press_releases/2006/JointPR06-03.cfm.
  7. X. Lin, O. Sneizko, Optical Fiber Communications IVB (Academic, 2002).
  8. E. Harstead, P. H. van Heyningen, Optical Fiber Communications IVB (Academic, 2002).
  9. D. Law, IEEE 802.3 CSMA/CD (ETHERNET) http://www.ieee802.org/3/.
  10. FSAN in Relation to Other Standard Bodies FSAN http://www.fsanweb.org/relation.asp.
  11. Access to B-ISDN via PONs (Wiley, 1996).
  12. G. Kramer, Ethernet Passive Optical Networks (McGraw-Hill, 2005).
  13. R. G. Smith, S. D. Personick, Semiconductor Devices for Optical Communication (Springer-Verlag, 1982).
  14. D. J. G. Mestgagh, Fundamentals of Multiple Access Optical Fiber Networks (Artech House, 1995).
  15. G. C. Yang, W. C. Kwong, "Performance comparison of multiwavelength CDMA and WCDMA+CDMA for fiber optic network," IEEE Trans. Commun. 45, 1426-1433 (1992).
  16. W. K. Lee, B. K. Kim, H. U. Park, K. J. Kim, "Tunable optical CDMA encoder/decoder based on modified PN code using FBG array," Optical Fiber Commun. Conf. AnaheimCA (2006) Paper OWI52.
  17. K. Takiguchi, T. Shibata, H. Takahashi, "Time-spreading/wavelength-hopping OCDMA experiment using PLC encoder/decoder with large spread factor," Optical Fiber Commun. Conf. AnaheimCA (2006) Paper OFP5.
  18. J. C. Daly, "Fiber optic intermodulation distortion," IEEE Trans. Commun. COM-30, 1954-1958 (1982).
  19. T. E. Darcie, "Subcarrier multiplexing for lightwave networks and video distribution system," IEEE J. Sel. Areas Commun. 8, 1240-1248 (1990).
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  21. C. Engineer, "Fiber in the loop: An evolution in service and systems," Proc. SPIE Fiber Opt. Subscriber Loop (1990) pp. 19-29.
  22. G. Van der Plas, "Demonstration of ATM-based passive optical network in the FTTH trial on the Bermuda," Proc. GLOBECOM (1995) pp. 988-992.
  23. ITU-T"Broadband optical access systems based on passive optical networks," Recommendation G. 983.1 (1998).
  24. IEEE"Physical medium dependent (PMD) sublayer and medium, type 1000 BASE-PX10 and 1000 BASE-PX20 (long wavelength passive optical network)," IEEE Recommendation 802.3 ah (2002).
  25. ITU-T"Broadband optical access systems based on passive optical networks," Recommendation G. 984.2 (2003).
  26. N. Kimura, K. Shinozaki, N. Kitamura, Y. Fukutomi, Y. Minota, H. Tanaka, A. Sato, H. Ando, "Receptacle transceiver module using silica waveguide for bi-directional transmission over single fiber," Proc. Dig. Electron. Compon. and Technol. (2003) pp. 290-295.
  27. T. Hashimoto, A. Kanda, R. Kasahara, I. Ogawa, Y. Shuto, M. Yanagisawa, "A bi-directional single fiber 1.25 Gb/s optical transceiver module with SFP package using PLC," Proc. Dig. Electron. Compon. and Technol. (2003) pp. 279-283.
  28. B. Blauvelt, A. Benzoni, J. Byrd, M. Downie, C. Grosjean, S. Hutchinson, R. Lee, F. Monzon, M. Newkirk, J. Paslaski, P. Sercel, D. Vernooy, R. Wyss, "High performance planar lightwave circuit triplexer with passive optical assembly," Optical Fiber Commun. Conf. AnaheimCA (2005) Paper OTh7.
  29. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).
  30. S.-M. Lee, S.-G. Mun, C.-H. Lee, "Demonstration of long-reach DWDM-PON based on wavelength locked Fabry–Pérot laser diodes," 10th OptoElectronics and Commun. Conf. SeoulKorea (2005) Paper PD 1.
  31. J.-H. Park, J.-S. Baik, C.-H. Lee, "Fault-localization in WDM-PONs," Optical Fiber Commun./Nat. Fiber Optic Eng. Conf. (OFC/NFOEC) San JoseCA (2006) Paper JThB79.
  32. H. D. Kim, S.-G. Kang, C.-H. Lee, "A low-cost WDM source with an ASE injected Fabry–Pérot semiconductor laser," IEEE Photon. Technol. Lett. 12, 1067-1069 (2000).
  33. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, C. W. Coldren, "Tunable semiconductor lasers: A tutorial," J. Lightw. Technol. 22, 193-202 (2004).
  34. H. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, M. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
  35. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, K.-H. Song, "Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network," J. Lightw. Technol. 22, 2582-2591 (2004).
  36. W. Hong, C.-K. Chan, L.-K. Chen, F. Tong, "An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser," IEEE Photon. Technol. Lett. 15, 1476-1478 (2003).
  37. "WDM-PON gains notice in the U.S.," Lightwave 23, 15 (2006) http://lw.pennnet.com/articles/article_display.cfm?Section=ARCHI&C=Techn&ARTICLE_ID =249380&KEYWORDS=Novera&p=13.
  38. J. Georage, "FTTH design with future in mind," Digest FTTH Conf. Las VegasNV (2005) Session 7D Session 7D.
  39. J.-S. Baik, C.-H. Lee, "Large-capacity Hybrid WDM/SCMA-PON using wavelength-locked Fabry–Pérot laser diodes," Optical Fiber Commun./Nat. Fiber Optic Eng. Conf. (OFC/NFOEC) San JoseCA (2006) Paper JThB66.
  40. H. S. Shin, D. K. Jung, H. S. Kim, D. J. Shin, S. B. Park, S. T. Hwang, Y. J. Oh, C. S. Shin, "Spectrally pre-composed ASE injection for a wavelength-seeded reflective SOA in a WDM-PON," Proc. ECOC (2005) pp. 459-460.
  41. W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, B. W. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, 2460-2462 (2005).
  42. P. E. GreenJr., Fiber to The Home: The New Empowerment (Wiley Interscience, 2006).
  43. B.-Y. Yoon, H. Frazier, D.-S. Lee, K. Tanaka, "10G-EPON Technical Feasibility," DenverCO http://www.ieee802.org/3/cfi/0306_1/cfi_0306_1.pdfDenverCO.
  44. S. Hornung, D. Payne, R. Davey, "New architecture for an all optical network," Optical Fiber Commun. Conf. (OFC) AnaheimCA (2005) Paper OTuH7.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited