OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4584–4599

Polarization Mode Dispersion of Installed Fibers

Misha Brodsky, Nicholas J. Frigo, Misha Boroditsky, and Moshe Tur

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4584-4599 (2006)


View Full Text Article

Acrobat PDF (2535 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Polarization mode dispersion (PMD), a potentially limiting impairment in high-speed long-distance fiber-optic communication systems, refers to the distortion of propagating optical pulses due to random birefringences in an optical system. Because these perturbations (which can be introduced through manufacturing imperfections, cabling stresses, installation procedures, and environmental sensitivities of fiber and other in-line components) are unknowable and continually changing, PMD is unique among optical impairments. This makes PMD both a fascinating research subject and potentially one of the most challenging technical obstacles for future optoelectronic transmission. Mitigation and compensation techniques, proper emulation, and accurate prediction of PMD-induced outage probabilities critically depend on the understanding and modeling of the statistics of PMD in installed links. Using extensive data on buried fibers used in long-haul high-speed links, the authors discuss the proposition that most of the temporal PMD changes that are observed in installed routes arise primarily from a relatively small number of “hot spots” along the route that are exposed to the ambient environment, whereas the buried shielded sections remain largely stable for month-long time periods. It follows that the temporal variations of the differential group delay for any given channel constitute a distinct statistical distribution with its own channel-specific mean value. The impact of these observations on outage statistics is analyzed, and the implications for future optoelectronic fiber-based transmission are discussed.

© 2006 IEEE

Citation
Misha Brodsky, Nicholas J. Frigo, Misha Boroditsky, and Moshe Tur, "Polarization Mode Dispersion of Installed Fibers," J. Lightwave Technol. 24, 4584-4599 (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-12-4584


Sort:  Journal  |  Reset

References

  1. C. D. Poole, J. A. Nagel, Optical Fiber Telecommunications IIIA (Academic, 1997) pp. 114-161.
  2. J. P. Gordon, H. Kogelnik, "PMD fundamentals: Polarization mode dispersion in optical fibers," Proc. Nat. Acad. Sci. USA 97, 4541-4550 (2000).
  3. H. Kogelnik, R. M. Jopson, L. E. Nelson, Optical Fiber Telecommunications IVB (Academic, 2002) pp. 725-861.
  4. C. D. Poole, R. E. Wagner, "Phenomenological approach to polarization dispersion in long single-mode fibers," Electron. Lett. 22, 1029-1030 (1986).
  5. J. N Damask, Polarization Optics in Telecommunications (Springer, 2004).
  6. Polarization Mode Dispersion (Springer, 2005).
  7. R. M. Jopson, L. E. Nelson, H. Kogelnik, "Measurement of second-order polarization-mode dispersion vectors in optical fibers," IEEE Photon. Technol. Lett. 11, 1153-1155 (1999).
  8. R. Ulrich, "Representation of codirectional coupled waves," Opt. Lett. 5, 109-111 (1977).
  9. N. J. Frigo, "A generalized geometrical representation of coupled mode theory," IEEE J. Quantum Electron. QE-22, 2121-2140 (1986).
  10. C. D. Poole, J. H. Winters, J. A. Nagel, "Dynamical equation for polarization dispersion," Opt. Lett. 16, 372-374 (1991).
  11. F. Curti, B. Daino, G. DeMarchis, F. Matera, "Statistical treatment of the evolution of the principal states of polarization in single-mode fibers," J. Lightw. Technol. 8, 1162-1166 (1990).
  12. G. J. Foschini, C. D. Poole, "Statistical theory of polarization dispersion in single mode fibers," J. Lightw. Technol. 9, 1439-1456 (1991).
  13. C. D. Poole, C. R. Giles, "Polarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fiber," Opt. Lett. 13, 155-157 (1988).
  14. C. D. Poole, R. W. Tkach, A. R. Chraplyvy, D. A. Fishman, "Fading in lightwave systems due to polarization-mode dispersion," IEEE Photon. Technol. Lett. 3, 68-70 (1991).
  15. C. De Angelis, A. Galtarossa, G. Gianello, F. Matera, M. Schiano, "Time evolution of polarization mode dispersion in long terrestrial links," J. Lightw. Technol. 10, 552-555 (1992).
  16. L. M. Gleeson, E. S. R. Sikora, M. J. O'Mahoney, "Experimental and numerical investigation into the penalties induced by second order polarization mode dispersion at 10 Gb/s," Proc. ECOC (1997) pp. 15-18.
  17. H. Bülow, G. Veith, "Temporal dynamics of error-rate degradation induced by polarization mode dispersion fluctuation of a field fiber link," Proc. ECOC (1997) pp. 115-118.
  18. J. Cameron, X. Bao, J. Stears, "Time evolution of polarization mode dispersion for aerial and buried cables," Proc. OFC (1998) pp. 240-241 Paper WM51.
  19. J. Cameron, L. Chen, X. Bao, J. Stears, "Time evolution of polarization mode dispersion in optical fibers," IEEE Photon. Technol. Lett. 10, 1265-1267 (1998).
  20. W. Weiershausen, H. Schöll, F. Küppers, R. Leppla, B. Hein, H. Burkhard, E. Lach, G. Veith, "40 Gb/s field test on an installed fiber link with high PMD and investigation of differential group delay impact on transmission performance," Proc. OFC (1999)3 pp. 125-127 Paper ThI5.
  21. M. Karlsson, M. J. Brentel, P. Andrekson, "Long-term measurement of PMD and polarization drift in installed fibers," J. Lightw. Technol. 18, 941-951 (2000).
  22. J. A. Nagel, M. W. Chbat, L. D. Garrett, J. P. Soigé, N. A. Weaver, B. M. Desthieux, H. Bülow, A. R. McCormick, R. M. Derosier, "Long-term PMD mitigation at 10 Gb/s and time dynamics over high-PMD installed fiber," Proc. ECOC (2000) pp. 31-32.
  23. C. T. Allen, P. K. Kondamuri, D. L. Richards, D. C. Hague, "Measured temporal and spectral PMD characteristics and their implications for network-level mitigation approaches," J. Lightw. Technol. 21, 79-86 (2003).
  24. D. L. Peterson, B. C. Ward, K. B. Rochford, P. J. Leo, G. Simer, "Polarization mode dispersion compensator field trial and fiber field characterization," Opt. Express 10, 614-621 (2002).
  25. H. Bülow, W. Baumert, H. Schmuck, F. Mohr, T. Schulz, F. Küppers, W. Weinershausen, "Measurement of the maximum speed of PMD fluctuation in installed field fiber," Proc. OFC (1999) pp. 83-85 Paper WE4.
  26. P. M. Krummrich, K. Kotten, "Extremely fast (microsecond scale) polarization changes in high speed long haul WDM transmission systems," Proc. OFC (2004) Paper FI3.
  27. P. M. Krummrich, E.-D. Schmidt, W. Weinershausen, A. Mattheus, "Field trial results on statistics of fast polarization changes in long haul WDM transmission systems," Proc. OFC (2005) Paper OThT6.
  28. M. Boroditsky, M. Brodsky, P. D. Magill, H. Rosenfeldt, "Polarization dynamics in installed fiberoptic systems," Proc. LEOS Annu. Meeting (2005) pp. 414-415 Paper TuCC1.
  29. M. Brodsky, M. Boroditsky, P. D. Magill, N. J. Frigo, M. Tur, "A ‘Hinge’ model for the temporal dynamics of polarization mode dispersion," Proc. LEOS Annu. Meeting (2004) pp. 90-91 Paper MJ5.
  30. N. Gisin, J. P. Von der Weid, J. P. Pellaux, "Polarization mode dispersion of short and long single-mode fibers," J. Lightw. Technol. 9, 821-827 (1991).
  31. N. Gisin, B. Gisin, J. P. Von der Weid, R. Passy, "How accurately can one measure a statistical quantity like polarization-mode dispersion?," IEEE Photon. Technol. Lett. 8, 1671-1673 (1996).
  32. M. Shtaif, A. Mecozzi, "Study of the frequency autocorrelation of the differential group delay in fibers with polarization mode dispersion," Opt. Lett. 25, 707-709 (2000).
  33. M. Karlsson, J. Brentel, "Autocorrelation function of the polarization mode dispersion vector," Opt. Lett. 24, 939-941 (1999).
  34. P. D. Magill, M. Brodsky, "PMD of installed fiber—An overview," Proc. LEOS PMD Summer Top. Meeting (2003) pp. 7-8 Paper MB2.2.
  35. M. Brodsky, P. D. Magill, N. J. Frigo, "‘Long-term’ PMD characterization of installed fibers—How much time is adequate?," Proc. OFC (2004) Paper FI5.
  36. D. L. Harris, P. K. Kondamuri, J. Pan, C. Allen, "Temperature dependence of wavelength-averaged DGD on different buried fibers," Proc. LEOS Annu. Meeting (2004) pp. 84-85 Paper MJ2.
  37. R. Caponi, B. Riposati, A. Rossaro, M. Schiano, "WDM design issues with highly correlated PMD spectra of buried optical cables," Proc. OFC (2002) pp. 453-455 Paper ThI5.
  38. J. Rasmussen, "Automatic PMD and chromatic dispersion compensation in high capacity transmission," Proc. LEOS PMD Summer Top. Meeting (2003) pp. 47-48 Paper TuB3.4.
  39. A. Nespola, S. Abrate, P. Poggiolini, M. Magri, "Long term PMD compensation of installed G.652 fibers in a metropolitan network," Proc. OFC (2005) Paper JWA1.
  40. M. Brodsky, P. D. Magill, N. J. Frigo, "Evidence for parametric dependence of PMD on temperature in installed 0.05 ps/km1/2 fiber," Proc. ECOC (2002).
  41. M. Brodsky, P. D. Magill, N. J. Frigo, "Polarization-mode dispersion of installed recent vintage fiber as a parametric function of temperature," IEEE Photon. Technol. Lett. 16, 209-211 (2004).
  42. N. J. Frigo, J. A. Nagel, unpublished.
  43. M. Brodsky, M. Tur, unpublished.
  44. P. K. Kondamuri, C. Allen, D. L. Richards, "Study of variation of the Laplacian parameter of DGD time derivative with fiber length using measured DGD data," Proc. Symp. Opt. Fiber Meas. (2004) pp. 91-94.
  45. C. Allen, P. K. Kondamuri, D. L. Richards, D. C. Hague, "Analysis and comparison of measured DGD data on buried single-mode fibers," Proc. Symp. Opt. Fiber Meas. (2002) pp. 195-198.
  46. M. Birk, L. Raddatz, D. Fishman, S. Woodward, P. D. Magill, "Field trial of end-to-end OC-768 transmission using 9 WDM channels over 1000 km of installed fiber," Proc. OFC (2003) pp. 290-291.
  47. M. Brodsky, M. Boroditsky, P. D. Magill, N. J. Frigo, M. Tur, "Field PMD measurements through a commercial, Raman-amplified ULH transmission system," Proc. LEOS PMD Summer Top. Meeting (2003) pp. 15-16 Paper MB3.3.
  48. M. Brodsky, M. Boroditsky, P. D. Magill, N. J. Frigo, M. Tur, "Physical mechanism for polarization mode dispersion temporal dynamics," IEEE LEOS Newslett. 18, 4-6 (2004) http://www.ieee.org/organizations/pubs/newsletters/leos/jun04/polarization.html.
  49. M. Brodsky, M. Boroditsky, P. D. Magill, N. J. Frigo, M. Tur, "Channel-to-channel variation of non-Maxwellian statistics of DGD in a field installed system," Proc. ECOC (2004)3 pp. 306-309 Paper We1.4.1.
  50. M. Brodsky, M. Boroditsky, P. D. Magill, N. J. Frigo, M. Tur, "Persistence of spectral variations in DGD statistics," Opt. Express 13, 4090-4095 (2005) http://www.opticsexpress.org/abstract.ft3/min?URI=OPEX-13-11-4090.
  51. M. Boroditsky, M. Brodsky, N. J. Frigo, P. D. Magill, L. Raddatz, "Technique for in situ measurements of polarization mode dispersion," Proc. OFC (2003) Paper TuK11 pp. 224-225.
  52. M. Boroditsky, M. Brodsky, N. J. Frigo, P. D. Magill, L. Raddatz, "In-service measurements of polarization mode dispersion and correlation to bit-error rate," IEEE Photon. Technol. Lett. 15, 572-574 (2003).
  53. W. Weiershausen, R. Leppla, F. Rumpf, R. Herber, A. Mattheus, A. Gladisch, A. Hirano, Y. Kisaka, Y. Miyamoto, S. Kuwahara, M. Yoneyama, M. Tomizawa, "PMD outage measurements in a joint field trial of a 43-Gb/s NTT WDM transmission system within DT's installed fiber environment," Proc. OFC (2004) Paper WP3.
  54. R. Leppla, S. Vorbeck, D. Goelz, S. Salaun, M. Joindot, R. Glatty, "Optical channel model for system outage probability analysis based on PMD measurements of installed WDM links and its components," Proc. SPIE (2005) pp. 167-182.
  55. M. Brodsky, J. Martinez, N. J. Frigo, A. Sirenko, "Dispersion compensation module as a polarization hinge," Proc. ECOC (2005) pp. 335-336 Paper We 1.3.2.
  56. C. Antonelli, A. Mecozzi, "Statistics of the DGD in PMD emulators," IEEE Photon. Technol. Lett. 16, 1840-1842 (2004).
  57. M. Boroditsky, M. Brodsky, N. J. Frigo, P. D. Magill, C. Antonelli, A. Mecozzi, "Outage probability for fiber routes with finite number of degrees of freedom," IEEE Photon. Technol. Lett. 17, 345-347 (2005).
  58. P. J. Winzer, H. Kogelnik, C. H. Kim, H. Kim, R. M. Jopson, L. E. Nelson, K. Ramanan, "Receiver impact on first-order PMD outage," IEEE Photon. Technol. Lett. 15, 1482-1484 (2003).
  59. P. J. Winzer, H. Kogelnik, K. Ramanan, "Precise outage specifications for first-order PMD," IEEE Photon. Technol. Lett. 16, 449-451 (2004).
  60. M. Shtaif, M. Boroditsky, "The effect of the frequency dependence of PMD on the performance of optical communications systems," IEEE Photon. Technol. Lett. 15, 1369-1371 (2003).
  61. A. Mecozzi, C. Antonelli, M. Boroditsky, M. Brodsky, "Characterization of the time dependence of polarization mode dispersion," Opt. Lett. 29, 2599-2601 (2004).
  62. H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopson, M. Boroditsky, M. Brodsky, "First-order PMD outage for the hinge model," IEEE Photon. Technol. Lett. 17, 1208-1210 (2005).
  63. M. Boroditsky, K. Cornick, C. Antonelli, M. Brodsky, S. Dods, N. J. Frigo, P. D. Magill, "Comparison of system penalties from first- and multiorder polarization-mode dispersion," IEEE Photon. Technol. Lett. 17, 1650-1652 (2005).
  64. S. X. Wang, A. M. Weiner, M. Boroditsky, M. Brodsky, "Monitoring PMD-induced penalty and other system performance metrics via a high-speed spectral polarimeter," IEEE Photon. Technol. Lett. 18, 1753-1755 (2006).
  65. K. E. Cornick, M. Boroditsky, S. Finch, S. D. Dods, P. M. Farrell, "Experimental comparison of PMD-induced system penalty models," IEEE Photon. Technol. Lett. 18, 1149-1151 (2006).
  66. M. Boroditsky, M. Brodsky, P. Magill, N. J. Frigo, M. Shtaif, "Improving the accuracy of mean DGD estimates by analysis of second-order PMD statistics," IEEE Photon. Technol. Lett. 16, 792-794 (2004).
  67. D. C. Baird, Experimentation: An Introduction to Measurement Theory and Experiment Design Englewood CliffsNJPrentice-Hall (Prentice-Hall, 1962)Englewood CliffsNJ.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited