OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4600–4615

Silicon Photonics

Bahram Jalali and Sasan Fathpour

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4600-4615 (2006)

View Full Text Article

Acrobat PDF (2200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


After dominating the electronics industry for decades, silicon is on the verge of becoming the material of choice for the photonics industry: the traditional stronghold of III–V semiconductors. Stimulated by a series of recent breakthroughs and propelled by increasing investments by governments and the private sector, silicon photonics is now the most active discipline within the field of integrated optics. This paper provides an overview of the state of the art in silicon photonics and outlines challenges that must be overcome before large-scale commercialization can occur. In particular, for realization of integration with CMOS very large scale integration (VLSI), silicon photonics must be compatible with the economics of silicon manufacturing and must operate within thermal constraints of VLSI chips. The impact of silicon photonics will reach beyond optical communication—its traditionally anticipated application. Silicon has excellent linear and nonlinear optical properties in the midwave infrared (IR) spectrum. These properties, along with silicon's excellent thermal conductivity and optical damage threshold, open up the possibility for a new class of mid-IR photonic devices.

© 2006 IEEE

Bahram Jalali and Sasan Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600-4615 (2006)

Sort:  Journal  |  Reset


  1. R. Soref, J. Lorenzo, "All-silicon active and passive guided-wave components for $\lambda = 1.3$ and 1.6 $\mu\hbox{m}$," IEEE J. Quantum Electron. QE-22, 873-879 (1986).
  2. R. A. Soref, B. R. Bennett, "Kramers–Kronig analysis of E–O switching in silicon," Proc. SPIE Integr. Opt. Circuit Eng. (1986) pp. 32-37.
  3. B. Schuppert, J. Schmidtchen, K. Petermann, "Optical channel waveguides in silicon diffused from GeSi alloy," Electron. Lett. 25, 1500-1502 (1989).
  4. R. A. Soref, J. Schmidtchen, K. Petermann, "Large single-mode rib waveguides in GeSi and Si-on-$\hbox{SiO}_{2}$," IEEE J. Quantum Electron 27, 1971-1974 (1991).
  5. P. D. Trinh, S. Yegnanarayanan, B. Jalali, "Integrated optical directional couplers in silicon-on-insulator," Electron. Lett. 31, 2097-2098 (1995).
  6. U. Fischer, T. Zinke, K. Petermann, "Integrated optical waveguide switches in SOI," Proc. IEEE Int. SOI Conf. (1995) pp. 141-142.
  7. T. T. H. Eng, S. S. Y. Sin, S. C. Kan, G. K. L. Wong, "Surface micromachined movable SOI optical waveguides," Proc. Int. Conf. Solid-State Sens. Actuators (1995) pp. 348-350.
  8. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, X. D. Liu, "Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 $\mu\hbox{m}$," Appl. Phys. Lett. 67, 2448-2449 (1995).
  9. P. D. Trinh, S. Yegnanarayanan, B. Jalali, "5 $\times$ 9 integrated optical star coupler in silicon-on-insulator technology," IEEE Photon. Technol. Lett. 8, 794-796 (1996).
  10. P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, "Silicon on-insulator (SOI) phased-array wavelength multi-demultiplexer with extremely low-polarization sensitivity," IEEE Photon. Technol. Lett. 9, 940-942 (1997).
  11. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Topics Quantum Electron. 4, 938-947 (1998).
  12. B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, "Prospects for silicon mid-IR Raman lasers," IEEE J. Sel. Topics Quantum Electron. .
  13. Kotura Inc. products http://www.kotura.com/.
  14. C. Gunn, "CMOS photonics for high-speed interconnects," IEEE Micro 26, 58-66 (2006).
  15. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Topics Quantum Electron. 6, 1312-1317 (2000).
  16. D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, K. Yazawa, "The design and implementation of a first-generation CELL processor," Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2005) pp. 184-592.
  17. K. Chang, S. Pamarti, K. Kaviani, E. Alon, X. Shi, T. J. Chin, J. Shen, G. Yip, C. Madden, R. Schmitt, C. Yuan, F. Assaderaghi, M. Horowitz, "Clocking and circuit design for a parallel I/O on a first-generation CELL processor," Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2005) pp. 526-615.
  18. N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, "Integrated planar lightwave bio/chem OEIC sensors on Si CMOS circuits," Proc. SPIE 5730, 226-233 (2005).
  19. J. J. Saarinen, J. E. Sipe, S. M. Weiss, P. M. Fauchet, "Optical sensors based on resonant porous silicon structures," Opt. Express 13, 3754-3764 (2005).
  20. J. Takahashi, T. Tsuchizawa, T. Watanabe, S. Itabashi, "Oxidation-induced improvement in the sidewall morphology and cross-sectional profile of silicon wire waveguides," J. Vac. Sci. Technol. B, Microelectron. Process. Phenom. 22, 2522-2525 (2004).
  21. Y. Vlasov, S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
  22. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, H. Morita, "Microphotonic devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
  23. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003).
  24. S. McNab, N. Moll, Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003).
  25. V. R. Almeida, R. R. Panepucci, M. Lipson, "Nano-taper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
  26. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, "Efficient fiber to SOI photonic wire coupler fabricated using standard CMOS technology," Proc. 18th Annu. Meeting IEEE LEOS (2005) pp. 214-215.
  27. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
  28. A. Narasimha, Low dispersion, high spectral efficiency, RF photonic transmission systems and low loss grating couplers for silicon-on-insulator nanophotonic integrated circuits Ph.D. dissertation Univ. CaliforniaLos Angeles (2004).
  29. P. Koonath, T. Indukuri, B. Jalali, "Add–drop filters utilizing vertically-coupled microdisk resonators in silicon," Appl. Phys. Lett. 86, 091102(1)-091102(3) (2005).
  30. M. M. Lee, M. C. Wu, "MEMS-actuated microdisk resonators with variable power coupling ratios," IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
  31. M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, H. I. Smith, "Multistage high-order microring-resonator add–drop filters," Opt. Lett. 31, 2571-2573 (2006).
  32. R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quant. Electronics QE-23, 123-129 (1987).
  33. J. P. Lorenzo, R. A. Soref, "1.3 $\mu\hbox{m}$ electro-optic silicon switch," Appl. Phys. Lett. 5, 6-8 (1987).
  34. L. Friedman, R. A. Soref, J. P. Lorenzo, "Silicon double-injection electro-optic modulator with junction gate control," J. Appl. Phys. 63, 1831-1839 (1988).
  35. S. R. Giguere, L. Friedman, R. A. Soref, J. P. Lorenzo, "Simulation studies of silicon electro-optic waveguide devices," J. Appl. Phys. 68, 4964-4970 (1990).
  36. C. K. Tang, G. T. Reed, A. J. Walton, A. G. Rickman, "Simulation of a low loss optical modulator for fabrication in SIMOX material," Proc. Mater. Res. Soc. Symp. (1993) pp. 247-252.
  37. C. K. Tang, G. T. Reed, A. J. Walton, A. G. Rickman, "Low-loss, single-mode, optical phase modulator in SIMOX material," J. Lightw. Technol. 12, 1394-1400 (1994).
  38. C. K. Tang, G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
  39. G. T. Reed, C. E. Png, "Silicon optical modulators," Mater. Today 8, 40-50 (2005).
  40. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, T. Franck, "High speed silicon Mach–Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
  41. EOspcase Inc.10-20 Gb/s Modulators http://www.eospace.com/12.5+G_modulator.htm.
  42. C. E. Png, G. T. Reed, W. R. Headley, K. P. Homewood, A. Liub, M. Paniccia, R. M. H. Atta, G. Ensell, A. G. R. Evans, D. Hak, O. Cohen, "Design and experimental results of small silicon-based optical modulators," Proc. SPIE 5356, 44-55 (2004).
  43. G. Cocorullo, A. Cutolo, F. G. Della Corte, I. Rendina, "New possibilities for efficient silicon integrated electro-optical modulators," Opt. Commun. 86, 228-235 (1991).
  44. V. R. Almeida, C. A. Barrios, R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
  45. Q. Xu, B. Shmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
  46. O. Boyraz, B. Jalali, "Demonstration of a directly modulated silicon Raman laser," Opt. Express 13, 796-800 (2005).
  47. D. Wood, Optoelectronic Semiconductor Devices (Prentice-Hall, 1994) pp. 250.
  48. H. Temkin, J. C. Bean, T. P. Pearsall, N. A. Olsson, D. V. Lang, "High photoconductive gain in $\hbox{Ge}_{x}\hbox{Si}_{1-x}/\hbox{Si}$ strained-layer superlattice detectors operating at 1.3 $\mu\hbox{m}$," Appl. Phys. Lett. 49, 155-157 (1986).
  49. B. Jalali, A. F. J. Levi, F. Ross, E. A. Fitzgerald, "SiGe waveguide photodetectors grown by rapid thermal chemical vapour deposition," Electron. Lett. 28, 269-271 (1992).
  50. B. Jalali, L. Naval, A. F. J. Levi, "Si-based receivers for optical data links," J. Lightw. Technol. 12, 930-935 (1994).
  51. F. Y. Huang, K. Sakamoto, K. L. Wang, P. Trinh, B. Jalali, "Epitaxial SiGeC waveguide photodetector grown on Si substrate with response in the 1.3–1.55-$\mu\hbox{m}$ wavelength range," IEEE Photon. Technol. Lett. 9, 229-231 (1997).
  52. L. Colace, G. Masini, G. Assanto, "Ge-on-Si approach to the detection of near-infrared light," IEEE J. Quantum Electron 35, 1843-1852 (1999).
  53. J. Michel, J. F. Liu, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S. Jongthammanurak, D. T. Danielson, L. C. Kimerling, J. Chen, F. O. Ilday, F. X. Kartner, J. Yasaitis, "High performance Ge p-i-n photodetectors on Si," Proc. Group IV Photon. Conf. (2005) pp. 177-179.
  54. S. M. Csutak, J. D. Schaub, S. Wang, J. Mogab, J. C. Campbell, "Integrated silicon optical receiver with avalanche photodiode," Proc. Inst. Electron. Eng.—Optoelectron. 150, 235-237 (2003).
  55. G. Dehlinger, J. D. Schaub, S. J. Koester, Q. C. Ouyang, J. O. Chu, A. Grill, "High-speed germanium-on-insulator photodetectors," Proc. 18th Annu. Meeting IEEE LEOS (2005) pp. 321-322.
  56. M. Jutzi, M. Berroth, G. Wohl, M. Oehme, E. Kasper, "Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth," IEEE Photon. Technol. Lett. 17, 1510-1512 (2005).
  57. C. L. Schow, L. Schares, S. J. Koester, G. Dehlinger, R. John, F. E. Doany, "A 15-Gb/s 2.4-V optical receiver using a Ge-on-SOI photodiode and a CMOS IC," IEEE Photon. Technol. Lett. 18, 1981-1983 (2006).
  58. D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, T. Tschudi, "Generation of 20-fs pulses by a prismless $\hbox{Cr}^{4+}:\hbox{YAG}$ laser," Opt. Lett. 27, 61-63 (2002).
  59. C. Xu, J. M. Roth, W. H. Knox, K. Bergman, "Light with single photon counting silicon avalanche photodiode," Electron. Lett. 38, 86-88 (2002).
  60. R. Salem, G. E. Tudury, T. U. Horton, G. M. Carter, T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
  61. Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides," IEEE Photon. Technol. Lett. 18, 1882-1884 (2006).
  62. B. Jalali, D. Dimitropoulos, V. Raghunathan, S. Fathpour, Silicon Photonics: State of the Art (Wiley, 2006).
  63. L. Pavesi, G. Guillot, Optical Interconnects: The Silicon Approach (Springer-Verlag, 2006).
  64. A. Irrera, D. Pacifici, M. Miritello, G. Franzo, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003).
  65. R. J. Walters, G. I. Bourianoff, A. Atwater, "Field-effect electroluminescence in silicon nanocrystals," Nat. Mater. 4, 143-146 (2005).
  66. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
  67. J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, L. Pavesi, "Stimulated emission in nanocrystalline silicon superlattices," Appl. Phys. Lett. 83, 5479-5481 (2003).
  68. P. M. Fauchet, "Light emission from Si quantum dots," Materials Today 8, 23-26 (2005).
  69. L. Pavesi, "Routes towards silicon-based lasers," Mater. Today 8, 23-26 (2005).
  70. S. G. Cloutier, P. A. Kossyrev, J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887-891 (2005).
  71. M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, C. S. Tsai, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Appl. Phys. Lett. 84, 2163-2165 (2004).
  72. M. E. Castagna, S. Coffa, L. Carestia, A. Messian, C. Buongiorno, "Quantum dot materials and devices for light emission in silicon," 32nd Eur. Solid-State Device Research Conf. (ESSDERC) FirenzeItaly (2002) Paper D21.3.
  73. H. Mertens, A. Polman, I. M. P. Aarts, W. M. M. Kessels, M. C. M. van de Sanden, "Absence of the enhanced intra-4f transition cross section at 1.5 $\mu\hbox{m}$ of $\hbox{Er}^{3+}$ in Si-rich $\hbox{SiO}_{2}$," Appl. Phys. Lett. 86, 241109 (2005).
  74. C. D. Presti, A. Irrera, G. Franzò, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, "Light emitting devices based on silicon nanoclusters," Proc. 2nd IEEE Int. Conf. Group IV Photon. (2005) pp. 45-47.
  75. J. Lee, J. H. Shin, N. Park, "Optical gain at 1.5 $\mu\hbox{m}$ in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs," J. Lightw. Technol. 23, 19-25 (2005).
  76. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, "Ultra-low threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
  77. M. T. Bulsara, "Optical interconnects promised by III–V on-silicon integration," Solid State Technology 47, 22 (2004).
  78. Z. Mi, P. Bhattacharya, J. Yang, K. P. Pipe, "Room-temperature self-organized $\hbox{In}_{0.5}\hbox{Ga}_{0.5}\hbox{As}$ quantum dot laser on silicon," Electron. Lett. 41, 742-744 (2005).
  79. H. Park, A. W. Fang, S. Kodama, J. E. Bowers, "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III–V offset quantum wells," Opt. Express 13, 9460-9464 (2005).
  80. Intel Inc.Hybrid silicon laser http://www.intel.com/research/platform/sp/hybridlaser.htm#top.
  81. R. Claps, D. Dimitropoulos, Y. Han, B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 $\mu\hbox{m}$," Opt. Express 10, 1305-1313 (2002).
  82. OSA Press Room EditorialAdvancing the science of light http://www.osa.org/news/pressroom/release/11.2002/jalali.aspx.
  83. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, "Observation of stimulated Raman scattering in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
  84. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, "Anti-stokes Raman conversion in silicon waveguides," Opt. Express 11, 2862-2872 (2003).
  85. O. Boyraz, B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
  86. Nature News EditorialFirst silicon laser pulses with life http://www.nature.com/news/2004/041025/full/041025-10.html.
  87. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Pannicia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
  88. J. M. Ralston, R. K. Chang, "Spontaneous-Raman-scattering efficiency and stimulated scattering in silicon," Phys. Rev. B, Condens. Matter 2, 1858-1862 (1970).
  89. P. A. Temple, C. E. Hathaway, "Multiphonon Raman spectrum of silicon," Phys. Rev. B, Condens. Matter 7, 3685-3697 (1973).
  90. D. Dimitropoulos, B. Houshmand, R. Claps, B. Jalali, "Coupled-mode theory of Raman effect in silicon-on-insulator waveguides," Opt. Lett. 28, 1954-1956 (2003).
  91. T. K. Liang, H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
  92. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004).
  93. M. A. Mendicino, Properties of Crystalline Silicon (Inst. Eng. Technol., 1998) pp. 992-1001.
  94. J. L. Freeouf, S. T. Liu, "Minority carrier lifetime results for SOI wafers," Proc. IEEE Int. SOI Conf. (1995) pp. 74-75.
  95. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115(1)-071115(3) (2005).
  96. R. Espinola, J. Dadap, R. Osgood, S. J. McNab, Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, 3713-3718 (2004).
  97. A. Liu, H. Rong, M. Paniccia, O. Cohen, D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
  98. S. Fathpour, O. Boyraz, D. Dimitropoulos, B. Jalali, "Demonstration of CW Raman gain with zero electrical power dissipation in p-i-n silicon waveguides," IEEE Conf. Lasers and Electro-Optics (CLEO) Long BeachCA (2006) Paper CMK3.
  99. D. Dimitropoulos, S. Fathpour, B. Jalali, "Intensity dependence of the carrier lifetime in silicon Raman lasers and amplifiers," Appl. Phys. Lett. 87, 261108(1)-261108(3) (2005).
  100. M. Krauss, H. Renner, E. Brinkmeyer, S. Fathpour, D. Dimitropoulos, V. Raghunathan, B. Jalali, "Efficient Raman amplification in cladding-pumped silicon waveguides," Proc. Group IV Photonics Conf. (2006) pp. 61-63.
  101. F. J. Grawert, J. T. Gopinath, F. Ö. Ilday, H. M. Shen, E. P. Ippen, F. X. Kärtner, S. Akiyama, J. Liu, K. Wada, L. C. Kimerling, "220-fs erbium–ytterbium: Glass laser mode locked by a broadband low-loss silicon/germanium saturable absorber," Opt. Lett. 30, 329 (2005).
  102. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, "Anti-Stokes Raman conversion in silicon waveguides," Opt. Express 11, 2862-2872 (2003).
  103. V. Raghunathan, R. Claps, D. Dimitropoulos, B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett. 85, 34-36 (2004).
  104. V. Raghunathan, R. Claps, D. Dimitropoulos, B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," J. Lightw. Technol. 23, 2094-2102 (2005).
  105. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
  106. R. Espinola, J. Dadap, R. Osgood, Jr.S. McNab, Y. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
  107. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
  108. L. R. Nunes, T. K. Liang, H. K. Tsang, M. Tsuchiya, D. Van Thourhout, P. Dumon, R. Baets, "Ultrafast non-inverting wavelength conversion by cross-absorption modulation in silicon wire waveguides," Proc. 2nd IEEE Int. Conf. Group IV Photon. (2005) pp. 154-156.
  109. V. Raghunathan, B. Jalali, "Stress-induced phase matching in silicon waveguides," Conf. Lasers and Electro-Optics (CLEO) Long BeachCA (2006) Paper CMK5.
  110. O. Boyraz, T. Indukuri, B. Jalali, "Self-phase modulation-induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
  111. O. Boyraz, P. Koonath, V. Raghunathan, B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
  112. O. Boyraz, J. Kim, M. N. Islam, F. Coppinger, B. Jalali, "10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers," J. Lightw. Technol. 18, 2167-2175 (2000).
  113. E. Dulkeith, Y. Vlasov, F. Xia, X. Chen, N. Panoiu, R. Osgood, "Efficient self-phase-modulation in submicron silicon-on-insulator waveguides," Proc. CLEO (2006).
  114. T. Indukuri, P. Koonath, B. Jalali, "Monolithic vertical integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon," Proc. OFC (2006).
  115. J. Halloy, "Research highlights: Photonics: Silicon goes underground," Nature 440, 718 (2006).
  116. Courtesy of Eric Pop StanfordCAStanford Univ..
  117. D. J. Frank, "Power-constrained CMOS scaling limits," IBM J. Res. Develop. 46, 235-244 (2002).
  118. International Technology Roadmap for Semiconductors http://www.itrs.net/.
  119. O. Qasaimeh, P. Bhattacharya, E. T. Croke, "SiGe–Si quantum-well electroabsorption modulators," IEEE Photon. Technol. Lett. 10, 807-809 (1998).
  120. Y. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
  121. S. Fathpour, K. K. Tsia, B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006).
  122. S. Fathpour, K. K. Tsia, B. Jalali, "Photovoltaic effect in silicon Raman amplifiers," Optical Amplifiers and Their Applications (OAA) WhistlerBCCanada (2006) Paper PD1.
  123. Y. Liu, H. K. Tsang, "Raman gain in helium ion implanted silicon waveguides," Proc. CLEO (2006).
  124. V. Raghunathan, R. Shori, O. Stafsudd, B. Jalali, "Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers," J. Phys. Status Solidi, A 203, R38-R40 (2006).
  125. M. C. M. Lee, M. C. Wu, "Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction," J. Microelectromech. Syst. 15, 338-343 (2006).
  126. M. Borselli, T. J. Johnson, O. Painter, "Beyond the Rayleigh scattering limit in high-$Q$ silicon microdisks: Theory and experiment," Opt. Express 13, 1515-1530 (2005).
  127. D. Leong, M. Harry, K. J. Reeson, K. P. Homewood, "A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 $\mu\hbox{m}$," Nature 387, 686-688 (1997).
  128. W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, "An efficient room-temperature silicon-based light-emitting diode," Nature 410, 192-194 (2001).
  129. M. A. Green, J. Zhao, A. Wang, P. J. Reece, M. Gal, "Efficient silicon light-emitting diodes," Nature 412, 805-808 (2001).
  130. S. Noda, T. Asano, "SOI-based photonic crystals," Proc. Group IV Photon. Conf. (2005) pp. 27-29.
  131. S. Y. Lin, V. M. Hietala, L. Wang, E. D. Jones, "Highly dispersive photonic band-gap prism," Opt. Lett. 21, 1771-1773 (1996).
  132. H. Hosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B, Condens. Matter 58, R10096-R10099 (1998).
  133. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacic, G. S. Petrich, J. D. Joannopoplus, L. A. Kolodziejski, E. P. Ippen, "Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal," Nat. Mater. 5, 93-96 (2006).
  134. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. P. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939 (2000).
  135. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Amer. B, Opt. Phys. 19, 2052-2059 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited