OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4628–4641

Microwave Photonics

Alwyn J. Seeds and Keith J. Williams

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4628-4641 (2006)

View Full Text Article

Acrobat PDF (1386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The low-loss wide bandwidth capability of opto-electronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. This paper reviews the development status of microwave photonic devices, describes their systems applications, and suggests some likely areas for future development.

© 2006 IEEE

Alwyn J. Seeds and Keith J. Williams, "Microwave Photonics," J. Lightwave Technol. 24, 4628-4641 (2006)

Sort:  Journal  |  Reset


  1. R. H. Blumenthal, "Design of a microwave frequency light modulator," Proc. IRE 50, 452-456 (1962).
  2. K. M. Johnson, "Microwave light modulation by the Pockel effect," Microw. J. 7, 51-56 (1964).
  3. R. D. Standley, G. D. Mandeville, "Performance of an 11 GHz optical modulator using $\hbox{LiTaO}_{3}$," Appl. Opt. 10, 1022-1023 (1971).
  4. I. Hayashi, M. B. Panish, P. W. Foy, S. Sumski, "Junction lasers which operate continuously at room temperature," Appl. Phys. Lett. 17, 109-111 (1970).
  5. Z. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Y. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, V. G. Triofim, "Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realisation of continuous emission at room temperature," Fiz. Tekh. Poluprovodn. 4, 1826 (1970).
  6. T. Ikegami, Y. Suematsu, "Resonance-like characteristics of the direct modulation of a junction laser," Proc. IEEE 55, 122-123 (1967).
  7. K. C. Kao, G. A. Hockham, "Dielectric-fiber surface waveguides for optical frequencies," Proc. Inst. Electr. Eng. 133, 1151-1158 (1966).
  8. F. P. Kapron, D. B. Keck, R. D. Maurer, "Radiation losses in glass optical waveguides," Appl. Phys. Lett. 17, 423-425 (1970).
  9. R. P. Rietz, "High speed semiconductor photodiodes," Rev. Sci. Instrum. 33, 994-999 (1962).
  10. K. M. Johnston, "High speed photodiode signal enhancement at avalanche breakdown voltage," IEEE Trans. Electron Devices ED-12, 55-63 (1965).
  11. J. E. Bowers, C. A. Burrus, R. J. McCoy, "InGaAs PIN photodetectors with modulation response to millimeter wavelengths," Electron. Lett. 21, 812-814 (1985).
  12. K. Berchtold, O. Krumpholz, J. Suri, "Avalanche photodiodes with a gain-bandwidth product of more than 200 GHz," Appl. Phys. Lett. 26, 585-587 (1975).
  13. P. Guetin, "Interaction between a light beam and a Gunn oscillator near the fundamental edge of GaAs," J. Appl. Phys. 40, 4114-4122 (1969).
  14. R. A. Kiehl, "Behaviour and dynamics of optically controlled TRAPATT oscillators," IEEE Trans. Electron Devices ED-25, 703-710 (1978).
  15. H. P. Vyas, R. J. Gutmann, J. M. Borrego, "Leakage current enhancement in IMPATT oscillators by photo-excitation," Electron. Lett. 13, 189-190 (1977).
  16. H. W. Yen, M. K. Barnoski, R. G. Hunsperger, R. T. Melville, "Switching of GaAs IMPATT diode oscillator by optical illumination," Appl. Phys. Lett. 31, 120-122 (1977).
  17. H. W. Yen, M. K. Barnoski, "Optical injection locking and switching of transistor oscillators," Appl. Phys. Lett. 32, 182-184 (1978).
  18. A. J. Seeds, J. R. Forrest, "Initial observations of optical injection locking of an X-Band IMPATT oscillator," Electron. Lett. 14, 829-830 (1978).
  19. S. Jayaraman, C. H. Lee, "Observation of two-photon conductivity in GaAs with nanosecond and picosecond light pulse," Appl. Phys. Lett. 20, 392-395 (1972).
  20. P. R. Smith, D. H. Auston, W. M. Augustyniak, "Measurement of GaAs field-effect transistor electronic impulse response by picosecond optical electronics," Appl. Phys. Lett. 39, 739-741 (1981).
  21. M. S. Heutmaker, T. B. Cook, B. Bosacchi, J. M. Wiesenfeld, R. S. Tucker, "Electro-optic sampling of a packaged high speed GaAs integrated circuit," IEEE J. Quantum Electron. 24, 226-233 (1988).
  22. J. P. van der Ziel, R. Dingle, R. C. Miller, W. Wiegman, W. A. Nordland, Jr."Laser oscillation from quantum states in very thin $\hbox{GaAs} - \hbox{Al}_{0.2}\hbox{Ga}_{0.8}$As multilayer structures," Appl. Phys. Lett. 26, 463-465 (1975).
  23. S. Weissner, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, J. Rosenweig, "Damping limited modulation bandwidths up to 40 GHz in undoped short cavity $\hbox{In}_{0.35}\hbox{Ga}_{0.65}\hbox{As} - \hbox{GaAs}$ multiple quantum well laser," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
  24. P. A. Morton, T. Tanbun-Ek, R. A. Logan, N. Chand, K. Wecht, A. M. Sergent, P. F. Sciortino, Jr."Packaged 1.55 $\mu\hbox{m}$ DFB laser with 25 GHz modulation bandwidth," Electron. Lett. 30, 2044-2046 (1994).
  25. Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, Y. Ogawa, "30 GHz bandwidth 1.55 $\mu\hbox{m}$ strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25-27 (1997).
  26. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, L. Backbom, "30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 $\mu\hbox{m}$ wavelength," Electron. Lett. 33, 488-489 (1997).
  27. C. H. Cox, IIIG. E. Betts, L. M. Johnson, "An analytic and experimental comparison of direct and external modulation in analog fiber-optic links," IEEE Trans. Microw. Theory Tech. MTT-38, 501-509 (1990).
  28. K. Noguchi, O. Mitomi, H. Miyazawa, "Millimeter-wave Ti:$\hbox{LiNbO}_{3}$ optical modulators," J. Lightw. Technol. 16, 615-619 (1998).
  29. R. G. Walker, "Electro-optic modulation at mm-wave frequencies in GaAs/AlGaAs guided wave devices," Proc. 8th IEEE LEOS Annu. Meeting (1995) pp. 118-119.
  30. S. R. Sakamoto, R. Spickerman, N. Dagli, "Novel narrow gap coplanar slow wave electrode for travelling wave electro-optic modulators," Electron. Lett. 31, 1183-1185 (1995).
  31. S. Thaniyavarn, G. Abbas, W. Charczenko, "Very-low-loss electro-optic $\hbox{LiNbO}_{3}$ components for RF/Analog transmission," IEEE Avionics and Fiber Optics Conf. MinneapolisMN (2005) Paper ThC3.
  32. V. J. Urick, M. S. Rogge, F. Bucholtz, K. J. Williams, "Wideband (0.045–6.25 GHz) 40 km analog fiber-optic link with ultra-high ($>$ 40 dB) all-photonic gain," Electron. Lett. 42, 552-553 (2006).
  33. J. H. Cole, M. M. Howerton, R. P. Moeller, J. Niemel, L. Cundin, C. Sunderman, "Low drive voltage modulators with ultra low loss serpentine electrodes for electric field sensing with optical fibers," SPIE—17th Int. Conf. Optical Fibre Sensors Tech. Dig. (2005) pp. 371.
  34. C. C. Teng, "Travelling wave polymeric intensity modulator with more than 40 GHz 3 dB electrical bandwidth," Appl. Phys. Lett. 60, 1538-1540 (1992).
  35. D. Chen, H. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, Y. Shi, "Demonstration of 110 GHz electro-optic polymer modulators," Appl. Phys. Lett. 70, 3335-3337 (1997).
  36. T. Ido, S. Tanaka, M. Suzuki, M. Koizumi, H. Sano, H. Inoue, "Ultra high-speed multiple quantum well electroabsorption optical modulators with integrated waveguides," J. Lightw. Technol. 14, 2026-2034 (1996).
  37. S. Z. Zhang, Y. J. Chiu, P. Abraham, J. E. Bowers, "25 GHz polarisation insensitive electroabsorption modulators with travelling wave electrodes," IEEE Photon. Technol. Lett. 11, 191-193 (1999).
  38. G. L. Li, S. A. Pappert, C. K. Sun, W. S. C. Chang, P. K. L. Yu, "Wide bandwidth travelling-wave InGaAsP/InP electro-absorption modulator for millimetre-wave applications," Proc. IEEE MTT-S Symp. Dig. (2001) pp. 61-64.
  39. H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Murai, K. Yamada, H. Wada, "EAM-integrated DFB laser modules with more than 40 GHz bandwidth," IEEE Photon. Technol. Lett. 13, 954-956 (2001).
  40. Y. Zhuang, W. S. C. Chang, P. K. L. Yu, "Peripheral-coupled-waveguide MQW electroabsorption modulator for near transparency and high spurious free dynamic range RF fiber-optic link," IEEE Photon. Technol. Lett. 16, 2033-2035 (2004).
  41. Y. Inaba, H. Nakayama, M. Kito, M. Ishino, K. Itoh, "High-power 1.55 $\mu\hbox{m}$ mass-transport-grating DFB lasers for externally modulated systems," IEEE J. Sel. Topics Quantum Electron. 7, 152 (2001).
  42. J. J. Plant, P. W. Juodawlkis, R. B. Huang, J. P. Donnelly, L. J. Missaggia, K. G. Ray, "1.5 $\mu\hbox{m}$ InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photon. Technol. Lett. 17, 735-737 (2005).
  43. T. J. Kane, R. L. Byer, "Monolithic unidirectional single mode Nd : YAG ring laser," Opt. Lett. 10, 65-67 (1985).
  44. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, N. Peyghambarian, "Low-noise narrow-linewidth fiber laser at 1550 nm," J. Lightw. Technol. 22, 57-62 (2004).
  45. T. L. Boyd, D. Klemer, P. A. Leilabady, J. Noriega, M. Pessot, "A 1.55 $\mu\hbox{m}$ solid-state laser source for DWDM applications," J. Lightw. Technol. 17, 1904-1908 (1999).
  46. L. Piccari, P. Spano, "New method for measuring ultrawide frequency response of optical detectors," Electron. Lett. 18, 116-118 (1982).
  47. L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, "Microwave signal generation with injection locked laser diodes," Electron. Lett. 19, 491-493 (1983).
  48. B. Cai, D. Wake, A. J. Seeds, "Microwave frequency synthesis using injection locked laser comb line selection," Proc. IEEE/LEOS Summer Topical Meeting RF Opto-Electron. (1995) pp. 13-14.
  49. S. Fukushima, C. F. C. Silva, Y. Muramoto, A. J. Seeds, "10 to 110 GHz tuneable opto-electronic frequency synthesis using optical frequency comb generator and uni-travelling-carrier photodiode," Electron. Lett. 37, 780-781 (2001).
  50. C. Laperle, M. Svilans, M. Poirier, M. Tetu, "Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device," IEEE Trans. Microw. Theory Tech. 47, 1219-1224 (1999).
  51. L. H. Enloe, J. L. Rodda, "Laser phase-locked loop," Proc. IEEE 53, 165-166 (1965).
  52. M. A. Grant, W. C. Michie, M. J. Fletcher, "The performance of optical phase-locked loops in the presence of non-negligible loop propagation delay," J. Lightw. Technol. LT-5, 592-597 (1987).
  53. R. T. Ramos, A. J. Seeds, "Delay, linewidth and bandwidth limitations in optical phase-locked loops," Electron. Lett. 26, 389-391 (1990).
  54. K. J. Williams, L. Goldberg, R. D. Esman, "6–34 GHz offset phase locking of Nd : YAG nonplanar ring lasers," Electron. Lett. 25, 1242-1243 (1989).
  55. L. G. Kazovsky, D. A. Atlas, "A 1300 nm experimental optical phase-locked loop," IEEE Photon. Technol. Lett. 1, 395-397 (1989).
  56. J. M. Khan, "1 Gb/s PSK homodyne transmission system using phase-locked semiconductor lasers," IEEE Photon. Technol. Lett. 1, 340-342 (1989).
  57. M. Kourogi, C.-H. Shin, M. Ohtsu, "A 134 MHz bandwidth homodyne optical phase locked loop of semiconductor laser diodes," IEEE Photon. Technol. Lett. 3, 270-272 (1991).
  58. R. T. Ramos, A. J. Seeds, "Fast heterodyne optical phase-lock loop using double quantum well laser diodes," Electron. Lett. 28, 82-83 (1992).
  59. U. Gliese, N. T. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, B. Broberg, "A wideband heterodyne optical phase-locked loop for the generation of 3–18 GHz microwave carriers," IEEE Photon. Technol. Lett. 4, 936-938 (1992).
  60. L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microw. Theory Tech. 47, 1257-1264 (1999).
  61. A. C. Bordonalli, C. Walton, A. J. Seeds, "High performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop," J. Lightw. Technol. 17, 328-342 (1999).
  62. L. A. Johansson, A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide locking bandwidth using a fiber-integrated optical phase-lock loop," IEEE Photon. Technol. Lett. 12, 690-693 (2000).
  63. M. Ibsen, E. Ronnekliev, G. J. Cowle, M. N. Zervas, R. I. Laming, "Multiple wavelength all fiber DFB lasers," Electron. Lett. 36, 143-144 (2000).
  64. A. C. Bordonalli, B. Cai, A. J. Seeds, P. J. Williams, "Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure," IEEE Photon. Technol. Lett. 8, 151-153 (1996).
  65. E. Droge, E. H. Bottcher, S. Kollakowski, A. Strittmatter, O. Reimann, R. Steingruber, A. Umbach, D. Bimberg, "Distributed MSM photodetectors for the long wavelength range," Proc. Eur. Conf. Opt. Commun. (1998) pp. 20-24.
  66. C. Cohen-Jonathan, L. Giraudet, A. Bonzo, J. P. Praseuth, "Waveguide AlInAs avalanche photodiode with a gain-bandwidth product of over 160 GHz," Electron. Lett. 33, 1492-1493 (1997).
  67. W. Gartner, "Depletion layer photoeffects in semiconductors," Phys. Rev. 116, 84-87 (1959).
  68. J. E. Bowers, C. A. Burrus, "High-speed zero-bias waveguide photodetectors," Electron. Lett. 22, 905-906 (1986).
  69. G. A. Davis, R. E. Weiss, R. A. LaRue, K. J. Williams, R. D. Esman, "A 920–1650 nm high current photodetector," IEEE Photon. Technol. Lett. 8, 1373-1375 (1996).
  70. K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, M. Yaita, "110 GHz 50% efficiency mushroom mesa waveguide p-i-n photodiode for a 1.55 $\mu\hbox{m}$ wavelength," IEEE Photon. Technol. Lett. 6, 719-721 (1994).
  71. M. Dentan, B. D. de Cremoux, "Numerical simulation of a p-i-n photodiode under high illumination," J. Lightw. Technol. 8, 1137-1144 (1990).
  72. P.-L. Liu, K. J. Williams, M. Y. Frankel, R. D. Esman, "Saturation characteristics of fast photodetectors," IEEE Trans. Microw. Theory Tech. 47, 1297-1303 (1999).
  73. L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, A. Y. Cho, "High power, high speed photodetectors design, analysis and experimental demonstration," IEEE Trans. Microw. Theory Tech. 45, 1320-1331 (1997).
  74. X. Li, N. Li, S. Demiguel, J. Campbell, D. Tulchinsky, K. Williams, "A comparison of front- and backside-illuminated high-saturation power partially depleted absorber photodetectors," IEEE J. Quantum Electron. 40, 1321-1325 (2004).
  75. H. Ito, T. Furata, S. Kodama, T. Ishibashi, "InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth," Electron. Lett. 36, 1809-1810 (2000).
  76. K. J. Williams, "Nonlinear mechanisms in microwave photodetectors operated with high intrinsic region electric fields," Appl. Phys. Lett. 65, 1219-1221 (1994).
  77. K. J. Williams, R. D. Esman, "Photodiode dc and microwave nonlinearity at high current due to carrier recombination nonlinearities," IEEE Photon. Technol. Lett. 10, 1015-1017 (1998).
  78. K. J. Williams, R. D. Esman, M. Dagenais, "Nonlinearities in p-i-n microwave photodetectors," J. Lightw. Technol. 14, 84-96 (1996).
  79. D. A. Tulchinsky, K. J. Williams, X. Li, N. Li, J. C. Campbell, "High-power photodetectors," IEEE LEOS Newslett. 19, 16-17 (2005).
  80. A. Umbach, S. V. Waasen, U. Auer, H. G. Bach, R. M. Bertenburg, V. Breur, W. Ebert, G. Janssen, G. G. Mekonnen, W. Passenberg, W. Schlaak, C. Schraam, A. Seeger, G. J. Tegude, G. Unterbosch, "Monolithic pin-HEMT 1.55 $\mu\hbox{m}$ photoreceiver on InP with 27 GHz bandwidth," Electron. Lett. 32, 2142-2143 (1996).
  81. A. J. Seeds, A. A. A. de Salles, "Optical control of microwave semiconductor devices," IEEE Trans. Microw. Theory Tech. 38, 577-585 (1990).
  82. A. A. A. de Salles, "Optical control of GaAs MESFETs," IEEE Trans. Microw. Theory Tech. MTT-31, 812-820 (1983).
  83. R. N. Simons, "Microwave performance of an optically controlled AlGaAs/GaAs high electron mobility transistor and GaAs MESFET," IEEE Trans. Microw. Theory Tech. MTT-35, 1444-1455 (1987).
  84. A. J. Seeds, J. F. Singleton, S. P. Brunt, J. R. Forrest, "The optical control of IMPATT oscillators," J. Lightw. Technol. LT-5, 403-411 (1987).
  85. A. A. de Salles, J. R. Forrest, "Initial observations of optical injection locking of GaAs metal semiconductor field effect transistor oscillators," Appl. Phys. Lett. 38, 392-394 (1981).
  86. N. J. Gomes, A. J. Seeds, "Tunnelling metal-semiconductor contact optically pumped mixer," Proc. Inst. Electr. Eng. 136, 88-96 (1989).
  87. D. K. W. Lam, R. I. Macdonald, "GaAs optoelectronic mixer operation at 4.5 GHz," IEEE Trans. Electron Devices ED-31, 1766-1768 (1984).
  88. H. R. Fetterman, D. C. Ni, "Control of millimetre-wave devices by optical mixing," Microw. Opt. Technol. Lett. 1, 34-39 (1988).
  89. Z. Urey, D. Wake, D. J. Newson, I. D. Henning, "Comparison of InGaAs transistors as optoelectronic mixers," Electron. Lett. 29, 1796-1798 (1993).
  90. Y. Betser, D. Ritter, C.-P. Liu, A. J. Seeds, A. Madjar, "A single stage three terminal heterojunction bipolar transistor optoelectronic mixer," J. Lightw. Technol. 16, 605-609 (1998).
  91. C.-P. Liu, A. J. Seeds, D. Wake, "Two-terminal edge-coupled InP/InGaAs heterojunction phototransistor opto-electronic mixer," IEEE Microw. Guided Wave Lett. 7, 72-74 (1997).
  92. A. J. Seeds, Review of Radio Science (Oxford Univ. Press, 1996) pp. 325-360.
  93. B. Cai, A. J. Seeds, "Optical frequency modulation links: Theory and experiments," IEEE Trans. Microw. Theory Tech. 45, 505-511 (1997).
  94. R. D. Esman, K. J. Williams, "Wideband efficiency improvement of fiber optic systems by carrier subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995).
  95. E. E. Funk, A. L. Campillo, D. L. Tulchinsky, "Nonlinear distortion and crosstalk in microwave fiber-radio links," Proc. IEEE Microw. Symp. Dig. (2002) pp. 1691-1693.
  96. K. J. Williams, L. T. Nichols, R. D. Esman, "Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link," J. Lightw. Technol. 16, 192-199 (1998).
  97. L. T. Nichols, K. J. Williams, R. D. Esman, "Optimizing the ultrawide-band photonic link," IEEE Trans. Microw. Theory Tech. 45, 1384-1389 (1997).
  98. B. H. Kolner, D. W. Dolfi, "Intermodulation distortion and compression in an integrated electrooptic modulator," Appl. Opt. 26, 3676-3680 (1987).
  99. P. L. Liu, B. J. Li, Y. S. Trisno, "In search of a linear electrooptic amplitude modulator," IEEE Photon. Technol. Lett. 3, 144-146 (1991).
  100. W. K. Burns, "Linearized optical modulator with fifth order correction," J. Lightw. Technol. 13, 1724-1727 (1995).
  101. W. B. Bridges, J. H. Schaffner, "Distortion in linearized electrooptic modulators," IEEE Trans. Microw. Theory Tech. 43, 2184-2197 (1995).
  102. C. D. Zaglanikis, A. J. Seeds, "Computer model for semiconductor laser amplifiers with RF intensity-modulated inputs," Proc. Inst. Electr. Eng. 139, 254-262 (1992).
  103. R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, "Low-noise erbium-doped fiber amplifier operating at 1.54 $\mu\hbox{m}$," Electron. Lett. 23, 1026-1028 (1987).
  104. J. D. Ingham, "Wide-frequency-range operation of a high linearity uncooled DFB laser for next-generation radio-over-fiber," Proc. IEEE/OSA OFC (2003) pp. 754-756.
  105. T. Niiho, "Multi-channel wireless LAN distributed antenna system based on radio-over-fiber techniques," Proc. IEEE LEOS Annu. Meeting (2004) pp. 57-58.
  106. D. Wake, D. Johansson, D. G. Moodie, "Passive picocell—A new concept in wireless network infrastructure," Electron. Lett. 33, 404-406 (1997).
  107. C. Liu, "Bi-directional transmission of broadband 5.2 GHz wireless signals over fiber using a multiple-quantum-well asymmetric Fabry–Pérot modulator/photodetector," Proc. IEEE/OSA OFC (2003) pp. 738-740.
  108. LG cell product description http://www.lgcwireless.com/products/lgcell.html.
  109. P. Hartmann, "Low-cost multimode fiber-based wireless LAN distribution system using uncooled directly modulated DFB laser diodes," Proc. ECOC (2003) pp. 804-805.
  110. H. Ogawa, D. Polifko, S. Bamba, "Millimetre-wave fiber optic systems for personal radio communication," IEEE Trans. Microw. Theory Tech. 40, 2285-2292 (1992).
  111. H. Schmuck, R. Heidemann, "High capacity hybrid fiber-radio field experiments at 60 GHz," Proc. IEEE/IEICE MWP (1996) pp. 65-68.
  112. K. Kitayama, "Fading-free transport of 60 GHz optical DSB signal in non-dispersion shifted fiber using chirped fiber grating," Proc. IEEE MWP (1998) pp. 223-226.
  113. J. J. O'Reilly, P. M. Lane, M. H. Capstick, Analogue Optical Fiber Communications (Inst. Electr. Eng., 1995) pp. 229-256.
  114. G. H. Smith, D. Novak, "Broadband millimetre-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects," IEEE Photon. Techol. Lett. 10, 141-143 (1998).
  115. K. I. Kitayama, T. Kuri, H. Yokoyama, M. Okuno, "60 GHz millimetre-wave generation and transport over OFDM fiber-optic networks," Proc. IEEE/IEICE MWP (1996) pp. 49-52.
  116. R. P. Braun, G. Grosskopf, D. Rohde, F. Schmidt, "Fiber optic millimetre-wave generation and bandwidth efficient data transmission for broadband mobile 18–20 and 60 GHz band communications," Proc. IEEE MWP (1997) pp. 235-238.
  117. L. A. Johansson, D. Wake, J. Seeds, "Millimetre-wave over fiber transmission using a BPSK reference modulated optical injection phase lock loop," Proc. IEEE/OSA OFC (2001) pp. WV3-1-WV3-3.
  118. T. E. Darcie, G. E. Bodeep, "Lightwave subcarrier CATV transmission systems," IEEE Trans. Microw. Theory Tech. 38, 524-533 (1990).
  119. P. A. Davies, N. J. Gomes, Analogue Optical Fiber Communications (Inst. Electr. Eng., 1995) pp. 1-32.
  120. F. Deborgies, G. Chevalier, Y. Combemale, P. Maillot, P. Richin, P. Blanchard, O. Mass, "100 $\mu\hbox{s}$ microwave optical delay line using directly modulated lasers," Proc. 20th Eur. Microw. Conf. (1990) pp. 677-680.
  121. I. L. Newberg, C. M. Gee, G. D. Thurmond, H. W. Yen, "Long microwave delay fiber-optic link for radar testing," IEEE Trans. Microw. Theory Tech. 38, 664-666 (1990).
  122. B. Moslehi, J. Goodman, M. Tur, H. J. Shaw, "Fiber optic lattice signal processing," Proc. IEEE 72, 909-930 (1984).
  123. J. Capmany, D. Pastor, B. Ortega, "New and flexible fiber optic delay line filters using chirped Bragg gratings and laser arrays," IEEE Trans. Microw. Theory Tech. 47, 1321-1326 (1999).
  124. K. Takada, M. Abe, T. Shibata, K. Okamoto, "1 GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems," J. Lightw. Technol. 20, 850-853 (2002).
  125. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
  126. C. Ming, G. Junziker, K. Vahala, "Fiber-optic add–drop device based on a silica microsphere-whispering gallery mode system," IEEE Photon. Technol. Lett. 11, 686-687 (1999).
  127. A. C. Lindsay, G. A. Knight, S. T. Winnall, "Photonic mixers for wide bandwidth RF receiver applications," IEEE Trans. Microw. Theory Tech. 43, 2311-2317 (1995).
  128. L. J. Mullen, C. Vieira, P. R. Herczfeld, V. M. Contarino, "Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection," IEEE Trans. Microw. Theory Tech. 43, 2370-2377 (1990).
  129. K. J. Williams, R. D. Esman, "Optically amplified downconverting link with shot-noise-limited performance," IEEE Photon. Technol. Lett. 8, 148-150 (1996).
  130. S. J. Strutz, K. J. Williams, "A 0.8–8.8 GHz image rejection microwave photonic downconverter," IEEE Photon. Technol. Lett. 12, 1376-1378 (2000).
  131. S. T. Winnall, K. L. Mahady, D. B. Hunter, A. C. Lindsay, "An optically amplified four-channel WDM downconvertor for wideband microwave receiver applications," Proc. IEEE MWP (2000) pp. 175-178.
  132. J. R. Forrest, F. P. Richards, A. A. Salles, P. Varnish, "Optical fiber networks for signal distribution and control in phased array radars," Proc. Int. Conf. Radar, Radar (1982) pp. 408-412.
  133. A. J. Seeds, "Optical technologies for phased array antennas," IEICE Trans. Electron. E76-C, 198-206 (1993).
  134. W. S. Birkmayer, M. J. Wale, "Proof of concept model of a coherent optical beam forming network," Proc. Inst. Electr. Eng. 139, 301-304 (1992).
  135. R. A. Wilson, P. Sample, A. Johnstone, M. F. Lewis, "Phased array antenna beamforming using a micromachined silicon spatial light modulator," Proc. IEEE/IEE MWP (2000) pp. 23-26.
  136. J. Stulemeijer, R. van Dijk, F. E. van Vliet, D. H. P. Maat, M. K. Smit, "Photonic chip for steering a four element phased array antenna," Proc. IEEE/IEE MWP (2000) pp. 20-22.
  137. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, "The first demonstration of an optically steered microwave phased array using true time delay," J. Lightw. Technol. 9, 1124-1131 (1991).
  138. D. Dolfi, F. Michel-Gabriel, S. Bann, J. P. Huignard, "Two dimensional optical architecture for time delay beam forming in a phased array antenna," Opt. Lett. 16, 255-257 (1991).
  139. M. Y. Frankel, R. D. Esman, "True time-delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability," IEEE Trans. Microw. Theory Technol. 43, 2387-2394 (1995).
  140. A. Molony, L. Zhang, J. A. R. Williams, I. Bennion, C. Edge, J. Fells, "Fiber Bragg grating true time delay systems: Discrete grating array 3-b delay lines and chirped grating 6-b delay lines," IEEE Trans. Microw. Theory Tech. 45, 1527-1530 (1997).
  141. T. R. Clark, J. U. Kang, R. D. Esman, "Performance of a time- and wavelength-interleaved photonic sampler for analogue to digital conversion," IEEE Photon. Technol. Lett. 11, 1168-1170 (1999).
  142. F. Coppinger, A. S. Bhushan, B. Jalali, "12 Gsample/s wavelength division sampling analogue to digital converter," Electron. Lett. 36, 316-318 (2000).
  143. W. Ng, R. Stephens, D. Persechini, K. V. Reddy, "Ultra-low jitter mode-locking of an Er-fiber laser at 10 GHz and its application in photonic analog to digital conversion," Proc. IEEE/IEE MWP (2000) pp. 251-254.
  144. A. S. Daryoush, "Phase coherency of generated millimeter wave signals using fiber optic distribution of a reference," Proc. IEEE/IEICE MWP (1996) pp. 225-228.
  145. M. Kourogi, T. Enami, M. Ohtsu, "A monolithic optical frequency comb generator," IEEE Photon. Technol. Lett. 6, 214-217 (1994).
  146. A. J. Seeds, C. Renaud, M. Pantouvaki, M. Robertson, D. Rogers, P. J. Cannard, "Efficient photonic THz generation, IEICE 2006 Asia-pacific microwave photonics conference," Proc. AP-MWP (2006) pp. 257-268.
  147. M. F. Lewis, "Novel RF oscillator using optical components," Electron. Lett. 28, 31-32 (1992).
  148. X. S. Yao, L. Maleki, "Opto-electronic oscillator and its applications," Proc. MWP (1996) pp. 265-268.
  149. W. Zhou, G. Blasche, "Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level," IEEE Trans. Microw. Theory Tech. 53, 929 (2005).
  150. E. N. Ivanov, S. A. Diddams, L. Hollberg, "Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser," IEEE J. Sel. Topics Quantum Electron. 9, 1072 (2003).
  151. S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, L. Hollberg, "Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals," IEEE J. Sel. Topics Quantum Electron. 9, 1072-1080 (2003).
  152. G. David, P. Bussek, U. Auer, F. J. Tegude, D. Jager, "Electro-optic probing of RF signals in submicrometre MMIC devices," Electron. Lett. 31, 2188-2189 (1995).
  153. T. Nagatsuma, "Progress of instrumentation and measurement towards millimetre-wave photonics," Proc. IEEE MWP (1999) pp. 91-94.
  154. G. Maury, A. Hilt, T. Berceli, B. Cabon, A. Vilcot, "Microwave frequency conversion methods by optical interferometer and photodiode," IEEE Trans. Microw. Theory Tech. 45, 1481-1485 (1997).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited