OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4642–4654

Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices

Connie J. Chang-Hasnain and Shun Lien Chuang

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4642-4654 (2006)


View Full Text Article

Acrobat PDF (1049 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The ability to manipulate the speed of light has recently become one of the most exciting emergent topics in optics. There are several experimental demonstrations showing the capability to slow down light more than six orders of magnitude in a variety of media, ranging from atomic vapor, solid state crystal, to semiconductors. These results have led to intensive research into new materials, devices, and system studies that examine their impact to new applications. It is believed that we are on the verge of a dramatic change in the way we envision and construct communication, processing and control systems. One direct application of slow and fast light devices is in the area of communications. One grand challenge remaining in information technology today is to store and buffer optical signals directly in optical format. As such, optical signals must be converted to electronic signals to route, switch, or be processed. This resulted in significant latencies and traffic congestions in current networks. In addition, keeping the data in optical domain during the routing process can greatly reduce the power, complexity and size of the routers. To this end, a controllable optical delay line can effectively function as an optical buffer, and the storage is proportional to the variability of the group velocity. In addition to optical buffers, slow and fast light devices can be used as tunable true-time delay elements in microwave photonics, which are important for remotely controlling phased array antenna. Other novel applications include nonlinear optics, optical signal processing, and quantum information processing. There are various approaches that can be used to vary the optical group velocity. Ultraslow or fast group velocity may result from a large material dispersion, waveguide dispersion, or both. In this paper, the authors provide a review of recent progress of slow and fast light using semiconductor devices. Specifically, they will discuss results obtained using semiconductor quantum-well/quantum-dot absorber and optical amplifiers. Slow and fast light are controllable electrically by changing the bias current or voltage as well as optically by changing the pump laser intensity and wavelength. Delay-bandwidth tradeoff and other figures of merits are analyzed.

© 2006 IEEE

Citation
Connie J. Chang-Hasnain and Shun Lien Chuang, "Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices," J. Lightwave Technol. 24, 4642-4654 (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-12-4642


Sort:  Journal  |  Reset

References

  1. C. J. Chang-Hasnain, P.-C. Ku, J. Kim, S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 9, 1884 (2003).
  2. R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain, "Slow-light optical buffers: Capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046 (2005).
  3. G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, "Optical delay lines based on optical filters," IEEE J. Quantum Electron. 37, 525-532 (2001).
  4. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711-713 (1999).
  5. P.-C. Ku, C. J. Chang-Hasnain, J. Kim, S. L. Chuang, "Semiconductor all-optical buffers using quantum dots in resonator structures," Proc. Opt. Fiber Commun. Conf. (2003) pp. 76-78.
  6. C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
  7. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113 903 (2003).
  8. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004).
  9. S. W. Chang, S. L. Chuang, P.-C. Ku, C. J. Chang-Hasnain, P. Palinginis, H. Wang, "Slow light using excitonic population pulsation," Phys. Rev. B, Condens. Matter 70, 235333-1-235333-11 (2004).
  10. P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, S. L. Chuang, "Ultraslow light ($<$ 200 m/s) propagation in a semiconductor nanostructure," Appl. Phys. Lett. 87, 171102 (2005).
  11. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, C. J. Chang-Hasnain, "Room temperature slow light in a quantum-well waveguide via coherent population oscillation," Opt. Express 13, 9909-9915 (2005).
  12. A. V. Uskov, C. J. Chang-Hasnain, "Slow and superluminal light in semiconductor optical amplifiers," Electron. Lett. 41, 55-56 (2005).
  13. A. Uskov, F. Sedgwick, C. J. Chang-Hasnain, "Delay limit of slow light in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 18, 73-733 (2006).
  14. B. Pesala, Z. Chen, C. J. Chang-Hasnain, "Tunable pulse delay demonstration using four-wave mixing in semiconductor optical amplifiers," Proc. OSA Top. Meeting Slow and Fast Light (2006) pp. 86.
  15. H. Su, S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4800-4807 (2006).
  16. H. Su, P. K. Kondratko, S. L. Chuang, "Electrically and optically controllable optical delay in a quantum-well semiconductor optical amplifier," Proc. Quantum Electron. and Lasers Sci. (2006).
  17. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153 902 (2005).
  18. A. E. Willner, L. Zhang, T. Luo, C. Yu, W. Zhang, Y. Wang, "Data bit distortion induced by slow light in optical communication systems," Proc. SPIE 6130, 61300T-1 (2006).
  19. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317 (2006).
  20. D. Dahan, G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: A route to all optical buffering," Opt. Express 13, 6234 (2005).
  21. P.-C. Ku, C. J. Chang-Hasnain, S. L. Chuang, "Variable semiconductor all-optical buffer," Electron. Lett. 38, 1581-1583 (2002).
  22. J. Kim, S. L. Chuang, P.-C. Ku, C. J. Chang-Hasnain, "Slow light using semiconductor quantum dots," J. Phys., Condens. Matter 16, S3727-S3735 (2004).
  23. S. L. Chuang, S. W. Chang, H. Su, "Slow light using semiconductor quantum wells and quantum dots for future optical networks," Proc. Int. Conf. SSDM (2005).
  24. S. Sarkar, Y. Guo, H. Wang, "Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells," Opt. Express 14, 2845-2850 (2006).
  25. J. Mørk, R. Kjær, M. van der Poel, L. Oxenløwe, K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express 13, 8136-8145 (2005).
  26. M. R. Fisher, S. L. Chuang, "Variable group delay and pulse reshaping of high bandwidth optical signals," IEEE J. Quantum Electron. 41, 885-891 (2005).
  27. S. Minin, M. Fisher, S. L. Chuang, "Current-controlled group delay using a semiconductor Fabry–Pérot amplifier," Appl. Phys. Lett. 84, 3238-3240 (2004).
  28. M. R. Fisher, S. Minin, S. L. Chuang, "Tunable optical group delay in an active waveguide semiconductor resonator," IEEE J. Sel. Topics Quantum Electron. 11, 197-203 (2005).
  29. H. Su, S. L. Chuang, "Room temperature slow light with semiconductor quantum-dot devices," Opt. Lett. 31, 271-273 (2006).
  30. H. Su, S. L. Chuang, "Room temperature slow and fast light in quantum dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102-1-061102-3 (2006).
  31. P. K. Kondratko, H. Su, S. L. Chuang, "Room temperature variable slow light using semiconductor quantum dots," Proc. CLEO (2006).
  32. P. K. Kondratko, S. W. Chang, H. Su, S. L. Chuang, "Variable slow light using coherent population oscillation in quantum-dot electroabsorption modulator," Proc. OSA Top. Meeting Slow and Fast Light (2006) pp. 78.
  33. X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899 (2005).
  34. X. Zhao, Y. Zhou, C. J. Chang-Hasnain, W. Hofmann, M. C. Amann, "Novel modulated-master injection-locked 1.55-$\mu\hbox{m}$ VCSELs," Opt. Express 14, 10 500-10 507 (2006).
  35. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, A. E. Willner, "Maximum time delay achievable on propagation through a slow—light medium," Phys. Rev A, Gen. Phys. 71, 023801 (2005).
  36. R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain, "Delay-bandwidth product and storage density in slow-light optical buffers," Electron. Lett. 41, 61 (2005).
  37. F. G. Sedgwick, C. J. Chang-Hasnain, P.-C. Ku, R. S. Tucker, "Storage-bit-rate product in slow-light optical buffers," Electron. Lett. 41, 1347-1348 (2005).
  38. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis," J. Opt. Soc. Amer. B, Opt. Phys. 22, 1062-1073 (2005).
  39. H. Wang, M. Jiang, D. G. Steel, "Measurement of phonon-assisted migration of localized excitons in GaAs/AlGaAs multiple-quantum-well structures," Phys. Rev. Lett. 65, 1255 (1990).
  40. D. S. Chemla, D. A. B. Miller, "Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures," J. Opt. Soc. Amer. B, Opt. Phys. 2, 1155 (1985).
  41. H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 1994).
  42. D. Derickson, Fiber Optics Test and Measurement (Prentice-Hall, 1998).
  43. G. P. Agrawal, "Population pulsations and nondegenerate four-wave mixing in semiconductor-lasers and amplifiers," J. Opt. Soc. Amer. B, Opt. Phys. 5, 147-159 (1988).
  44. T. Mukai, T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave-mixing in a 1.5-$\mu\hbox{m}$ traveling-wave semiconductor-laser amplifier," IEEE J. Quantum Electron. 26, 865-875 (1990).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited