OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4655–4673

The Role of Optics and Electronics in High-Capacity Routers

Rodney S. Tucker

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4655-4673 (2006)


View Full Text Article

Acrobat PDF (534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper examines the role of optical and electronic technologies in future high-capacity routers. In particular, optical and electronic technologies for use in the key router functions of buffering and switching are compared. The comparison is based on aggressive but plausible estimates of buffer and switch performance projected out to around 2020. The analysis of buffer technologies uses a new model of power dissipation in optical-delay-line buffers using optical fiber and planar waveguides, including slow-light waveguides. Using this model together with models of storage capacity in ideal and nonideal slow-light delay lines, the power dissipation and scaling characteristics of optical and electronic buffers are compared. The author concludes that planar integrated optical buffers occupy larger chip area than electronic buffers, dissipate more power than electronic buffers, and are limited in capacity to, at most, a few IP packets. Optical fiber-based buffers have lower power dissipation but are bulky. The author also concludes that electronic buffering will remain the technology of choice in future high-capacity routers. The power dissipation of high-capacity optical and electronic cross connects for a number of cross connect architectures is compared. The author shows that optical and electronic cross connects dissipate similar power and require a similar chip area. Optical technologies show a potential for inclusion in high-capacity routers, especially as the basis for arrayed-waveguide-grating-based cross connects and as components in E/O/E interconnects. A major challenge in large cross connects, both optical and electronic, will be to efficiently manage the very large number of interconnects between chips and boards. The general conclusion is that electronic technologies are likely to remain as integral components in the signal transmission path of future high-capacity routers. There does not appear to be a compelling case for replacing electronic routers with optically transparent optical packet switches.

© 2006 IEEE

Citation
Rodney S. Tucker, "The Role of Optics and Electronics in High-Capacity Routers," J. Lightwave Technol. 24, 4655-4673 (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-12-4655


Sort:  Journal  |  Reset

References

  1. R. Parthiban, R. S. Tucker, C. Leckie, "Waveband grooming and IP aggregation in optical networks," J. Lightw. Technol. 21, 2476-2488 (2003).
  2. A. Vukovic, "Communication network power efficiency—Assessment, limitations, and directions," Electron. Cool. 10, 18-24 (2004).
  3. C. Minkenberg, R. P. Luijten, F. Abel, W. Denzel, M. Gusat, "Current issues in packet switch design," ACM SigComm Comput. Commun. Rev. 33, 119-124 (2003).
  4. D. Blumenthal, P. Prucnal, J. Sauer, "Photonic packet switches: Architectures and experimental implementations," Proc. IEEE 82, 1650-1667 (1994).
  5. R. S. Tucker, W. Zhong, "Photonic packet switching: An overview," IEICE Trans. Commun. E82-B, 254-264 (1999).
  6. S. Yao, B. Mukherjee, S. Dixit, "Advances in photonic packet switching: An overview," IEEE Commun. Mag. 38, 84-94 (2000).
  7. D. K. Hunter, I. Andonovic, "Approaches to optical internet packet switching," IEEE Commun. Mag. 38, 116-122 (2000).
  8. D. Chiaroni, "Packet switching matrix: A key element for the backbone and the metro," IEEE J. Sel. Areas Commun. 21, 1018-1025 (2003).
  9. C. Qiao, M. Yoo, "Optical burst switching OBS—A new paradigm for an optical internet," J. High Speed Netw. 8, 69-84 (1999).
  10. V. W. S. Chan, "Guest editorial: Optical communications and networking series," IEEE J. Sel. Areas Commun. 23, 1441-1443 (2005).
  11. R. Parthiban, R. S. Tucker, C. Leckie, A. Zalesky, A. V. Tran, "Does optical burst switching have a role in the core network?," Proc. OFC/NFOEC (2005) pp. 50-52.
  12. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
  13. P. C. Ku, F. Sedgwich, C. Chang-Hasnain, P. Palinginis, T. Li, T. H. Wang, S. W. Chang, S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004).
  14. C. J. Chang-Hasnain, P. C. Ku, J. Kim, S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 91, 1884-1897 (2003).
  15. R. W. Boyd, M. S. Bigelow, N. Lepeshkin, A. Schweinsberg, P. Zerom, "Fundamentals and applications of slow light in room temperature solids," Proc. Annu. Meeting IEEE Lasers and Electro-Opt. Soc. (2004) pp. 835-836.
  16. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
  17. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis," J. Opt. Soc. Amer. B, Opt. Phys. 22, 1062-1074 (2005).
  18. R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain, "Slow-light optical buffers: Capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046-4066 (2005).
  19. H. J. Chao, "Next generation routers," Proc. IEEE 90, 1518-1558 (2002).
  20. E. Le Rouzic, S. Gooselin, "160-Gb/s optical networking: A prospective techno-economical analysis," J. Lightw. Technol. 23, 3024-3033 (2005).
  21. R. V. Caenegem, J. M. Martinez, D. Colle, M. Pickavet, P. Demeester, F. Ramos, J. Marti, "From IP over WDM to all-optical packet switching: Economical view," J. Lightw. Technol. 24, 1638-1645 (2006).
  22. K. Washio, "SiGe HBT and BiCMOS technologies for optical transmission and wireless communication systems," IEEE Trans. Electron Devices 50, 656-668 (2003).
  23. International Technology Roadmap for Semiconductors (2005) http://public.itrs.net/ 2005 Edition.
  24. D. Wischik, N. McKeown, "Part I: Buffer sizes for core routers," ACM/SIGCOMM Comput. Commun. Rev. 35, 75-78 (2005).
  25. R. S. Tucker, "Petabit-per-second routers: Optical vs. electronic implementations," Optical Fiber Commun. Conf. AnaheimCA (2006).
  26. G. Appenzeller, I. Keslassy, N. McKeown, "Sizing router buffers," Proc. SIGCOMM (2004) pp. 281-292.
  27. D. Wischik, "Buffer requirements for high-speed routers," Proc. Eur. Conf. Opt. Commun. (2005) pp. 23-26.
  28. N. Beheshti, Y. Ganjali, R. Rajaduray, D. Blumenthal, N. McKeown, "Buffer sizing in all-optical packet switches," Optical Fiber Commun. Conf. AnaheimCA (2006).
  29. J. Spring, R. S. Tucker, "Photonic 2 $\times$ 2 packet switch with input buffers," Electron. Lett. 29, 284-285 (1993).
  30. D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, I. Andonovic, "SLOB: A switch with large optical buffers for packet switching," J. Lightw. Technol. 16, 1725-1736 (1998).
  31. S. S. Mughal, R. S. Tucker, K. Hinton, "A taxonomy of optical buffer architectures," Conf. Optical Internet JejuKorea (2006).
  32. H. Yang, S. J. B. Yoo, "All-optical variable buffering strategies and switch fabric architectures for future all-optical data routers," J. Lightw. Technol. 23, 3321-3330 (2005).
  33. E. Burmeister, J. E. Bowers, "Integrated gate matrix switch for optical packet buffering," IEEE Photon. Technol. Lett. 18, 103-105 (2006).
  34. H. Park, E. F. Burmeister, S. Bjorlin, J. E. Bowers, "40-Gb/s optical buffer design and simulation," Proc. Int. Conf. Numer. Simul. Optoelectron. Devices (2004) pp. 19-20.
  35. P. Janes, J. Tidstrom, L. Thylen, "Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media," J. Lightw. Technol. 23, 3893-3899 (2005).
  36. S. Mookherjea, A. Yariv, "Coupled resonator optical waveguides," IEEE J. Sel. Topics Quantum Electron. 8, 448-456 (2002).
  37. M. Settle, R. Engelen, T. Karle, M. Salib, A. Michaeli, L. Kuipers, T. F. Krauss, "Flatband slow light in photonic crystal waveguides," OSA Topical Meeting Slow and Fast Light Washington, DC (2006).
  38. J. Khurgin, "Adiabatically tunable optical delay lines and their performance limitations," Opt. Lett. 30, 2778-2780 (2005).
  39. S. Dubovitsky, W. H. Steier, "Relationship between the slowing and loss in optical delay lines," IEEE J. Quantum Electron. 42, 372-377 (2006).
  40. S. Hughes, L. Ramunno, J. F. Young, J. E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94, 033903-1-033903-3 (2005).
  41. L. O'Faolain, M. Settle, D. O'Brien, T. F Krauss, "Dependence of loss on group velocity in photonic crystal waveguides," OSA Topical Meeting Slow and Fast Light Washington, DC (2006).
  42. A. Melloni, F. Morichetti, M. Martnelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-378 (2003).
  43. J. Khurgin, Power Dissipation in Slow Light Devices—Comparative Analysis (2006) submitted for publication.
  44. J. Khurgin, "Expanding the bandwidth of slow-light photonic devices based on coupled resonators," Opt. Lett. 30, 513-515 (2005).
  45. J. T. Mok, E. Tsoy, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, "Slow gap soliton propagation excited by microchip Q-switched pulses," Proc. IEEE Lasers and Electro-Opt. Soc. Annu. Meeting (2005) pp. 509-510.
  46. K. Lee, S.-J. Lee, H.-J. Yoo, "A practical method to use eDRAM in the shared bus packet switch," Proc. GLOBECOM (2002) pp. 2303-2307.
  47. K. Itoh, "Low-voltage embedded RAMs in the nanometer era," Proc. IEEE ICICDT (2005) pp. 235-242.
  48. F. Wei, Z. Wen-De, "Noise analysis of photonic packet synchronizer," J. Lightw. Technol. 22, 343-350 (2004).
  49. N. Chrysos, M. Katevenis, "Scheduling in non-blocking buffered three-stage switching fabrics," Conf. Computer Commun. BarcelonaSpain (2006).
  50. N. Wada, H. Harai, F. Kubota, "40 Gb/s interface optical code based photonic packet switch prototype," Proc. Opt. Fiber Commun. Conf. (2003) pp. 801-802.
  51. J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, M. Zirngibl, "Optical switch fabrics for ultra-high-capacity IP routers," J. Lightw. Technol. 21, 2839-2850 (2003).
  52. W. L. Ha, R. M. Fortenberry, R. S. Tucker, "Demonstration of photonic fast packet switching at 700 Mbit/s data rate," Electron. Lett. 27, 789-790 (1991).
  53. R. Fortenberry, A. J. Lowery, W. L. Ha, R. S. Tucker, "Photonic packet switch using semiconductor optical amplifier gates," Electron. Lett. 27, 1305-1307 (1991).
  54. D. Chiaroni, P. Bonno, O. Rofidal, J. C. Jacquinot, P. Poignant, C. Coeurjoly, F. Fernandez, E. Mestre, J. L. Moncelet, A. Noury, A. Jourdan, T. Zami, A. Dupas, M. Renaud, N. Sahri, D. Keller, S. Silvestre, G. Eilenberger, S. Bunse, W. Lautenschlaeger, F. Masetti, "First demonstration of an asynchronous optical packet switching matrix prototype for multi-terabit-class routers/switches," Proc. 27th Eur. Conf. Opt. Commun. (2001) pp. 60-61.
  55. F. Masetti, D. Zriny, D. Verchere, J. Blanton, T. Kim, J. Talley, D. Chiaroni, A. Jourdan, J. C. Jacquinot, C. Coeurjolly, P. Poignant, M. Renaud, G. Eilenberger, S. Bunse, W. Latenschleager, J. Wolde, U. Bilgak, "Design and implementation of a multi-terabit optical burst/packet router prototype," Proc. Opt. Fiber Commun. Conf. (2002) pp. FD1-1-FD1-3.
  56. C. Guillemot, M. Renaud, P. Gambini, C. Janz, I. Andonovic, R. Bauknecht, B. Bostica, M. Burzio, F. Callegati, M. Casoni, D. Chiaroni, F. Clerot, S. L. Danielsen, F. Dorgeuille, A. Dupas, A. Franzen, P. B. Hansen, D. K. Hunter, A. Kloch, R. Krahenbuhl, B. Lavigne, A. Le Corre, C. Raffaelli, M. Schilling, J. C. Simon, L. Zucchelli, "Transparent optical packet switching: The European ACTS KEOPS project approach," J. Lightw. Technol. 16, 2117-2134 (1998).
  57. W. Zhong, R. S. Tucker, "Wavelength routing-based photonic packet buffers and their applications in photonic packet switching systems," J. Lightw. Technol. 16, 1737-1745 (1998).
  58. K. Vlachos, J. Zhang, J. Cheyns, Sulur, N. Chi, E. Van Breusegem, I. T. Monroy, J. G. L. Jennen, P. V. Holm-Nielsen, C. Peucheret, R. O'Dowd, P. Demeester, A. M. J. Koonen, "An optical IM/FSK coding technique for the implementation of a label-controlled arrayed waveguide packet router," J. Lightw. Technol. 21, 2617-2628 (2003).
  59. T. Palm, L. Thylen, O. Nilsson, O. Sahlen, "Switch energy requirements for first- and second-order perturbations in asymmetric quantum box optical switches," IEEE J. Quantum Electron. 33, 562-565 (1997).
  60. H. J. Chao, D. Kung-Li, J. Zhigang, "PetaStar: A petabit photonic packet switch," IEEE J. Sel. Areas Commun. 21, 1096-1112 (2003).
  61. Y. Li, E. Towe, M. W. Haney, "Special issue on optical interconnections for digital systems," Proc. IEEE 88, 723-727 (2000).
  62. M. E. Ali, G. Panotopoulos, E. de Groot, G. M. Flower, G. H. Rankin, A. J. Schmit, K. D. Djordjev, M. R. T. Tan, A. Tandon, W. Gong, R. P. Telia, B. Law, L.-K. Chia, D. W. Dolfi, B. E. Lemoff, "Demonstration of a high-density parallel-WDM optical interconnect," Proc. IEEE Lasers and Electro-Opt. Soc. Annu. Meeting (2004) pp. 459-460.
  63. C. Kromer, G. Sialm, C. Berger, T. Morf, M. L. Schmatz, F. Ellinger, D. Erni, G.-L. Bona, H. Jackel, "A 100-mW 4 $\times$ 10 Gb/s transceiver in 80-nm CMOS for high-density optical interconnects," IEEE J. Solid-State Circuits 40, 2667-2679 (2005).
  64. H. Cho, P. Kapur, K. C. Saraswat, "Power comparison between high-speed electrical and optical interconnects for interchip communication," J. Lightw. Technol. 22, 2021-2033 (2004).
  65. J. T. Ahn, M. L. Lee, H. S. Seo, K. H. Kim, "Low input power wavelength converter using gain-clamped semiconductor optical amplifier," Electron. Lett. 38, 1045-1047 (2002).
  66. M. A. Summerfield, R. S. Tucker, "Optimization of pump and signal powers for wavelength converters based on FWM in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 8, 1316-1318 (1996).
  67. T. Simoyama, H. Kuwatsuka, B. E. Little, M. Matsuda, Y. Kotaki, H. Ishikawa, "High-efficiency wavelength conversion using FWM in an SOA integrated DFB laser," IEEE Photon. Technol. Lett. 12, 31-33 (2000).
  68. M. L. Masanovic, V. Lal, J. A. Summers, J. S. Barton, E. J. Skogen, L. G. Rau, L. A. Coldren, D. J. Blumenthal, "Widely tunable monolithically integrated all-optical wavelength converters in InP," J. Lightw. Technol. 23, 1350-1362 (2005).
  69. M. C. Chia, D. K. Hunter, I. Andonovic, P. Ball, I. Wright, S. P. Ferguson, K. M. Guild, M. J. O'Mahony, "Packet loss and delay performance of feedback and feed-forward arrayed-waveguide gratings-based optical packet switches with WDM inputs-outputs," J. Lightw. Technol. 19, 1241-1254 (2001).
  70. S. Bregni, A. Pattavina, G. Vegetti, "Architectures and performance of AWG-based optical switching nodes for IP networks," IEEE J. Sel. Areas Commun. 21, 1113-1121 (2003).
  71. K. Komatsu, Hybrid Optical Matrix Gate Switches for Photonic Switching (1997).
  72. N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Proc. Opt. Fiber Commun. Conf. (2001) pp. PD32-1-PD32-3.
  73. J. D. Evankow, Jr.R. A. Thompson, "Photonic switching modules designed with laser-diode amplifiers," IEEE J. Sel. Areas Commun. 6, 1087-1095 (1988).
  74. R. F. Kalman, L. G. Kazovsky, J. W. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048-1051 (1992).
  75. F. Dorgeuiele, L. Noirie, J. P. Faure, A. Ambrosy, S. Rabaron, F. Boubal, M. Schilling, C. Artigue, "1.28 Tb/s throughput 8 $\times$ 8 optical switch based on arrays of gain-clamped semiconductor optical amplifier gates," Proc. Opt. Fiber Commun. Conf. (2000) pp. 221-223.
  76. T. Chien, W. I. Way, "Dynamic range and switching speed limitations of an N $\times$ N optical packet switch based on low-gain semiconductor optical amplifiers," J. Lightw. Technol. 14, 525-533 (1996).
  77. C. Develder, J. Cheyns, M. Pickavet, P. Demeester, "Multistage architectures for optical packet switching using SOA-based broadcast-and-select switches," Proc. Opt. Fiber Commun. Conf. (2003) pp. 794-795.
  78. Vitesse4.25 Gbps 144 $\times$ 144 Crosspoint Switch (2005).
  79. T. H. Szymanski, H. Wu, A. Gourgy, "Power complexity of multiplexer-based optoelectronic crossbar switches," IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13, 604-617 (2005).
  80. A. V. Mule, R. A. Villalaz, P. J. Joseph, A. Naeemi, P. A. Kohl, T. K. Gaylord, J. D. Meindl, "Polylithic integration of electrical and optical interconnect technologies for gigascale fiber-to-the-chip communication," IEEE Trans. Adv. Packag. 28, 421-433 (2005).
  81. D. K. Hunter, M. C. Chia, I. Andonovic, "Buffering in optical packet switches," J. Lightw. Technol. 16, 2081-2094 (1998).
  82. N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightw. Technol. 7, 1071-1082 (1989).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited