OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4697–4710

Capacity Demand and Technology Challenges for Lightwave Systems in the Next Two Decades

Emmanuel B. Desurvire

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4697-4710 (2006)


View Full Text Article

Acrobat PDF (539 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Ten to 20 years from now, optical networks will have to carry vastly increased amounts of Internet traffic. Today's knowledge (2006) already points to ultimate technology limits in the physical layer, foretelling the end of the so-called “Optical Moore's Law.” Such an observation is discordant with the generic and optimistic view of a “virtually infinite” optical bandwidth combined with unlimited Internet-traffic growth. In order to meet long-term needs and challenges, therefore, basic research in wideband optical components and subsystems must be urgently revived today.

© 2006 IEEE

Citation
Emmanuel B. Desurvire, "Capacity Demand and Technology Challenges for Lightwave Systems in the Next Two Decades," J. Lightwave Technol. 24, 4697-4710 (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-12-4697


Sort:  Journal  |  Reset

References

  1. E. Desurvire, "Optical telecommunications in 2025," Proc. 31st Eur. Conf. Opt. Commun. (2005).
  2. D. B. Keck, "Optical fiber spans 30 years," Lightwave 17, 78 (2000) www.corning.com/docs/opticalfiber/r3461.pdf.
  3. Telegeography Research and Primetrica Inc.2005 and 2006 Executive Summaries on “Global Internet Geography” www.telegeography.com (free resources).
  4. K. Amano, Y. Iwamoto, "Optical fiber submarine systems," J. Lightw. Technol. 8, 595 (1990).
  5. Data from KMI Research (2005) http://kmi.pennnet.com/press_display.cfm?ARTICLE_ID=225156.
  6. R. Mack, "Fiberoptics Technology: Markets Penetrated and Outlook," Proc. FiberFest Symp. (2005) http://www.nefc.com/pp_fiberfest2005/KMISlides_NJ.ppt.
  7. T. Mastrangelo, "PON leads an emerging FTTP equipment market," RHK Annual Market Forecast (2004).
  8. M. Kunigonis, "The reality of FTTH in the United States; Its inherent stimulus and the ‘bottom line’ results," Proc. 13th Convergence India Conf. (2005).
  9. P. E. Green, Wiley Survival Guides in Engineering and Science (Wiley, 2006).
  10. O. Leclerc, B. Lavigne, D. Chiaroni, E. Desurvire, Optical Fiber Telecommunications IV-A (Academic, 2002) pp. 732-783.
  11. P. S. Henry, R. A. Linke, A. H. Grauck, Optical Fiber Telecommunications II (Academic, 1988) pp. 781-831.
  12. E. Desurvire, Wiley Survival Guide in Global Telecommunications, Broadband Access, Optical Components an Networks, and Cryptography (Wiley, 2004) pp. 302-303.
  13. E. Desurvire, "Lightwave systems: The fifth generation," Scientific Amer. 266, 114 (1992).
  14. E. Desurvire, "Lightwave systems: The fifth generation," Pour la Science 60 (1992).
  15. I. Tuomi, The lives and death of Moore's law (, 2002).
  16. M. Dubash, Moore's Law is dead, says Gordon Moore .
  17. J. G. Proakis, Digital Communications (McGraw-Hill, 1983) pp. 231.
  18. S. Haykin, Digital Communications (Wiley, 1988) pp. 273.
  19. R. Nagarajan, "Large-scale photonic integrated circuits," IEEE J. Sel. Topics Quantum Electron. 11, 50 (2005).
  20. R. Nagarajan, "400 Gb/s (10 channel $\times$ 40 Gb/s) DWDM photonic integrated circuit," Electron. Lett. 41, 347-349 (2005).
  21. E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002).
  22. M. Yamada, "Overview of wideband optical fiber amplification technologies," NTT Tech. Rev. 2, 34 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412034.pdf.
  23. T. Sakamoto, A. Mori, H. Masuda, H. Ono, "Wideband rare-earth-doped fiber amplification technologies—Gain bandwidth expansion in the C and L bands," NTT Tech. Rev. 2, 38 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412038.pdf.
  24. S. Aozasa, T. Sakamoto, H. Ono, A. Mori, M. Yamada, "Wideband rare-earth-doped fiber amplification technologies—O-band and S-band amplification technologies," NTT Tech. Rev. 2, 44 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412044.pdf.
  25. A. Mori, H. Masuda, "Tellurite fiber Raman amplifiers," NTT Tech. Rev. 2, 51 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412051.pdf.
  26. D. Bayart, P. Baniel, A. Bergonzo, J. Y. Boniort, P. Bousselet, L. Gasca, D. Hamoir, F. Leplingard, A. Le Sauze, P. Nouchi, F. Roy, P. Sillard, "Broadband optical amplification over 17.7 THz range," Electron. Lett. 36, 1569 (2000).
  27. T. Akiyama, K. Kawagushi, M. Sugawara, M. Ekawa, H. Ebe, Y. Arakawa, "Quantum-dot semiconductor optical amplifiers," IEEE Leos Newslett. 20, 11 (2006).
  28. A. R. Grant, "Calculating the Raman pump distribution to achieve minimum gain ripple," IEEE J. Quantum Electron. 38, 1503 (2002).
  29. L. F. Mollenauer, A. R. Grant, P. V. Mamyshev, "Time-division multiplexing of pump wavelengths to achieve ultra-broadband, fmat, backward-pumped Raman gain," Opt. Lett. 27, 592 (2002).
  30. E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 519-527.
  31. E. Desurvire, Wiley Survival Guide in Global Telecommunications, Broadband Access, Signaling Principles, Networks Protocols, and Wireless Systems (Wiley, 2004) pp. 82-85.
  32. E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 216-218.
  33. E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 222-228.
  34. J. M. Kahn, K.-P. Ho, "Spectral efficiency limits and modulation/detection techniques for DWDM systems," IEEE J. Sel. Topics Quantum Electron. 10, 259-272 (2004).
  35. P. P. Mitra, J. B. Stark, "Nonlinear limits to the information capacity of optical fiber communications," Nature 411, 1027-1030 (2001).
  36. J. M. Kahn, K.-P. Ho, "A bottleneck for optical fibres," Nature 411, 1007-1010 (2001).
  37. J. B. Stark, P. P. Mitra, A. Sengupta, "Information capacity for optical communication channels," Opt. Fiber Technol. 7, 275 (2001).
  38. E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 218-222.
  39. E. Desurvire, "Quantum noise model for ultimate information capacity limits in long-haul WDM transmission," Electron. Lett. 38, 983 (2002).
  40. E. Desurvire, "A quantum model for optically-amplified nonlinear transmission systems," Opt. Fiber Technol. 8, 210 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited