OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4876–4884

Homodyne Phase-Shift-Keying Systems: Past Challenges and Future Opportunities

Leonid G. Kazovsky, Georgios Kalogerakis, and Wei-Tao Shaw

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4876-4884 (2006)

View Full Text Article

Acrobat PDF (1036 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Homodyne phase-shift-keying systems can achieve the best receiver sensitivity and the longest transmission distance among all optical communication systems. This paper reviews recent research efforts in the field and examines future possibilities that might lead toward potential practical use of these systems. Additionally, phase estimation techniques based on feed-forward phase recovery and digital delay-lock loop approaches are examined, simulated, and compared.

© 2006 IEEE

Leonid G. Kazovsky, Georgios Kalogerakis, and Wei-Tao Shaw, "Homodyne Phase-Shift-Keying Systems: Past Challenges and Future Opportunities," J. Lightwave Technol. 24, 4876-4884 (2006)

Sort:  Journal  |  Reset


  1. L. G. Kazovsky, S. Benedetto, A. Willner, Optical Fiber Communication Systems (Artech House, 1996).
  2. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
  3. L. G. Kazovsky, D. A. Atlas, "A 1320-nm experimental optical phase-locked loop: Performance investigation and PSK homodyne experiments at 140 Mb/s and 2 Gb/s," J. Lightw. Technol. 8, 1414-1425 (1990).
  4. J. M. Kahn, "4-Gb/s PSK homodyne transmission system using phase-locked semiconductor lasers," IEEE Photon. Technol. Lett. 2, 285-287 (1990).
  5. J. M. Kahn, "BPSK homodyne detection experiment using balanced optical phase-locked loop with quantized feedback," IEEE Photon. Technol. Lett. 2, 840-843 (1990).
  6. S. Norimatsu, "PSK optical homodyne detection using external cavity laser diodes in Costas loop," IEEE Photon. Technol. Lett. 2, 374-376 (1990).
  7. K. Yonenaga, K. Hagimoto, "10-Gbit/s $\times$ four-channel WDM transmission experiment over 2400-km DSF using optical DPSK direct detection scheme," Optical Fiber Commun. DallasTX (1997) Paper ThS2.
  8. A. H. Gnauck, P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightw. Technol. 23, 115-130 (2005).
  9. C. Xu, X. Liu, X. Wei, "Differential phase-shift keying for high spectral efficiency optical transmissions," IEEE J. Sel. Topics Quantum Electron. 10, 281-293 (2004).
  10. J. M. Kahn, K.-P. Ho, "Spectral efficiency limits and modulation/detection techniques for DWDM systems," IEEE J. Sel. Topics Quantum Electron. 10, 259-272 (2004).
  11. R. F. Kalman, "Dynamic range of coherent analog fiber-optic links," J. Lightw. Technol. 12, 1263-1277 (1994).
  12. L. G. Kazovsky, "Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements," J. Lightw. Technol. LT-3, 1238-1247 (1985).
  13. L. G. Kazovsky, "Balanced phase-locked loops for optical homodyne receivers: Performance analysis, design considerations, and laser linewidth requirements," J. Lightw. Technol. LT-4, 182-195 (1986).
  14. S. Huang, L. Wang, "Exact evaluation of laser linewidth requirements for optical PSK homodyne communication systems with balanced PLL receivers," J. Lightw. Technol. 14, 661-664 (1996).
  15. L. G. Kazovsky, "Phase- and polarization-diversity coherent optical techniques," J. Lightw. Technol. 7, 279-292 (1989).
  16. L. G. Kazovsky, "Performance analysis and laser linewidth requirements for optical PSK heterodyne communications systems," J. Lightw. Technol. LT-4, 415-425 (1986).
  17. K. Kikuchi, "Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator," J. Lightw. Technol. LT-2, 1024-1033 (1984).
  18. L. G. Kazovsky, O. K. Tonguz, "ASK and FSK coherent lightwave systems: A simplified approximate analysis," J. Lightw. Technol. 8, 338-352 (1990).
  19. J. J. O. Pires, J. R. F. da Rocha, "Performance analysis of DPSK direct detection optical systems in the presence of interferometric intensity noise," J. Lightw. Technol. 10, 1722-1730 (1992).
  20. J. R. Barry, J. M. Kahn, "Carrier synchronization for homodyne and heterodyne detection of optical quadriphase-shift keying," J. Lightw. Technol. 10, 1939-1951 (1992).
  21. S. Savory, A. Hadjifotiou, "Laser linewidth requirements for optical DQPSK systems," IEEE Photon. Technol. Lett. 13, 930-932 (2004).
  22. O. K. Tonguz, R. E. Wagner, "Equivalence between preamplified direct detection and heterodyne receivers," IEEE Photon. Technol. Lett. 3, 835-837 (1991).
  23. S. Norimatsu, K. Iwashita, "Linewidth requirements for optical synchronous detection systems with nonnegligible loop delay time," J. Lightw. Technol. 10, 341-349 (1992).
  24. I. Garrett, "Impact of phase noise in weakly coherent systems: A new and accurate approach," J. Lightw. Technol. 8, 329-337 (1990).
  25. G. J. Foschini, "Noncoherent detection of coherent lightwave signals corrupted by phase noise," IEEE Trans. Commun. 36, 306-314 (1988).
  26. S. Yamazaki, K. Emura, "Feasibility study on QPSK optical-heterodyne detection system," J. Lightw. Technol. 8, 1646-1653 (1990).
  27. S. Norimatsu, "Optimum optical power splitting ratio of decision driven phase-locked loop in BPSK optical homodyne receiver," J. Lightw. Technol. 13, 2183-2190 (1995).
  28. S. Norimatsu, "10 Gb/s optical PSK homodyne transmission experiments using external cavity DFB LDs," Electron. Lett. 26, 648-649 (1990).
  29. L. G. Kazovsky, "Wide-linewidth phase diversity homodyne receivers," J. Lightw. Technol. 6, 1527-1536 (1988).
  30. A. W. Davis, "Phase diversity techniques for coherent optical receivers," J. Lightw. Technol. LT-5, 561-572 (1987).
  31. T. Okoshi, Y. H. Cheng, "Four-port homodyne receiver for optical fiber communications comprising phase and polarization diversities," Electron. Lett. 23, 377-378 (1987).
  32. L. D. Tzeng, "Polarization-insensitive coherent receiver using a double balanced optical hybrid system," Electron. Lett. 23, 1195-1196 (1987).
  33. C. Xu, "Differential phase-shift keying for high spectral efficiency optical transmissions," IEEE J. Sel. Topics Quantum Electron. 10, 281-293 (2004).
  34. A. H. Gnauck, "Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity," IEEE Photon. Technol. Lett. 15, 99-101 (2003).
  35. J.-X. Cai, "RZ-DPSK field trial over 13, 100 km of installed non slope-matched submarine fibers," Optical Fiber Commun. Conf. Los AngelesCA (2004) Paper PDP34.
  36. A. H. Gnauck, "6 $\times$ 42.7-Gb/s transmission over ten 200-km EDFA-amplified SSMF spans using polarization-alternating RZ-DPSK," Optical Fiber Commun. Conf. Los AngelesCA (2004) Paper PDP35.
  37. G. Charlet, "WDM transmission at 6 Tb/s capacity over transatlantic distance, using 42.7 Gb/s differential phase-shift keying without pulse carver," Optical Fiber Commun. Conf. Los AngelesCA (2004) Paper PDP36.
  38. L. Becouarn, "42 $\times$ 42.7 Gb/s RZ-DPSK transmission over a 4820 km long NZDSF deployed line C-band-only EDFAs," Optical Fiber Commun. Conf. Los AngelesCA (2004) Paper PDP37.
  39. N. Yoshikane, I. Morita, "1.14 b/s/Hz spectrally-efficient 50 $\times$ 84.5 Gb/s transmission over 300 km using copolared CS-RZ DQPSK signals," Optical Fiber Commun. Conf. Los AngelesCA (2004) Paper PDP38.
  40. S. L. Jansen, "10, 200 km 22 $\times$ 2 $\times$ 10 Gb/s RZ-DQPSK dense WDM transmission without inline dispersion compensation through optical phase conjugation," Optical Fiber Commun. Conf. Los AngelesCA (2005) Paper PDP37.
  41. S. Bhandare, "5.94-Tb/s 1.49-b/s/Hz (40 $\times$ 2 $\times$ 2 $\times$ 40 Gb/s) RZ-DQPSK polarization-division multiplex C-band transmission over 324 km," IEEE Photon. Technol. Lett. 17, 914-916 (2005).
  42. F. Ghirardi, "InP-based 10-GHz bandwidth polarization diversity heterodyne photoreceiver with electrooptical adjustability," IEEE Photon. Technol. Lett. 6, 814-816 (1994).
  43. M. Hamacher, "Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only," IEEE Photon. Technol. Lett. 8, 75-77 (1996).
  44. L. Wang, "Counterreceiving heterodyne detection with an integrated coherent transceiver and its applications in bandwidth-on-demand access networks," J. Lightw. Technol. 17, 1724-1731 (1999).
  45. M. H. Shih, "Integrated coherent transceivers for broad-band access networks," IEEE Photon. Technol. Lett. 9, 1526-1528 (1997).
  46. E.-J. Bachus, "Coherent optical systems implemented for business traffic routing and access: The RACE COBRA project," J. Lightw. Technol. 14, 1309-1319 (1996).
  47. U. Hilbk, "First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP," IEEE Photon. Technol. Lett. 7, 129-131 (1995).
  48. S. Norimatsu, "An optical 90$^{\circ}$-hybrid balanced receiver module using a planar lightwave circuit," IEEE Photon. Technol. Lett. 7, 737-739 (1995).
  49. P. S. Cho, "Coherent homodyne detection of BPSK signals using time-gated amplification and $\hbox{LiNbO}_{3}$ optical 90$^{\circ}$ hybrid," IEEE Photon. Technol. Lett. 16, 1727-1729 (2004).
  50. F. Derr, "Coherent optical QPSK intradyne system: Concept and digital receiver realization," J. Lightw. Technol. 10, 1290-1296 (1992).
  51. M. G. Taylor, "Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments," IEEE Photon. Technol. Lett. 16, 674-676 (2004).
  52. D.-S. Ly-Gagnon, "Unrepeated 210-km transmission with coherent detection and digital signal processing of 20-Gb/s QPSK signal," Optical Fiber Commun. AnaheimCA (2005) Paper OTuL4.
  53. R. Noé, "PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing," IEEE Photon. Technol. Lett. 17, 887-889 (2005).
  54. M. G. Taylor, "Accurate digital phase estimation process for coherent detection using a parallel digital processor," Euro. Conf. Optical Commun. GlasgowU.K. (2005) Paper Tu4.2.6.
  55. R. Noé, "Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery," J. Lightw. Technol. 23, 802-808 (2005).
  56. T. H. Lee, "A 2.5 V CMOS delay-locked loop for 18 Mbit, 500 megabyte/s DRAM," IEEE J. Solid-State Circuits 29, 1491-1496 (1994).
  57. B. Razavi, Design of Integrated Circuits for Optical Communications (McGraw-Hill, 2003).
  58. V. W. S. Chan, "Optical space communications," IEEE J. Sel. Topics Quantum Electron. 6, 959-975 (2000).
  59. X. Zhu, J. M. Khan, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. Commun. 50, 1293-1300 (2002).
  60. J. P. Gordon, L. F. Mollenauer, "Phase noise in photonic communications systems using linear amplifiers," Opt. Lett. 15, 1351-1355 (1990).
  61. K.-P. Ho, J. M. Kahn, "Electronic compensation technique to mitigate nonlinear phase noise," J. Lightw. Technol. 22, 779-783 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited