OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4903–4911

40-Gb/s All-Optical Processing Systems Using Hybrid Photonic Integration Technology

Efstratios Kehayas, Dimitris Tsiokos, Paraskevas Bakopoulos, Dimitris Apostolopoulos, Dimitrios Petrantonakis, Leontios Stampoulidis, Alistair Poustie, Rob McDougall, Graeme Maxwell, Yong Liu, Shaoxian Zhang, Harmen J. S. Dorren, Jorge Seoane, Pablo Van Holm-Nielsen, Palle Jeppesen, and Hercules Avramopoulos

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4903-4911 (2006)

View Full Text Article

Acrobat PDF (2445 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach–Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can be treated as generic switching elements and, when efficiently interconnected, can form larger and more functional network subsystems. Specifically, this paper reports on all-optical subsystems capable of performing on-the-fly packet clock recovery, 3R regeneration, label/payload separation, and packet routing using the wavelength domain. The all-optical subsystems are capable of operating with packet-mode traffic and are suitable for all-optical label-switched and self-routed network nodes. The intelligent functionality offered, combined with the compactness and stability of the optical gates, verifies the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems-on-chip utilizing multiple SOA-MZI optical gates on a single chip.

© 2006 IEEE

Efstratios Kehayas, Dimitris Tsiokos, Paraskevas Bakopoulos, Dimitris Apostolopoulos, Dimitrios Petrantonakis, Leontios Stampoulidis, Alistair Poustie, Rob McDougall, Graeme Maxwell, Yong Liu, Shaoxian Zhang, Harmen J. S. Dorren, Jorge Seoane, Pablo Van Holm-Nielsen, Palle Jeppesen, and Hercules Avramopoulos, "40-Gb/s All-Optical Processing Systems Using Hybrid Photonic Integration Technology," J. Lightwave Technol. 24, 4903-4911 (2006)

Sort:  Journal  |  Reset


  1. A. Viswanathan, "Evolution of multiprotocol label switching," IEEE Commun. Mag. 36, 165-173 (1998).
  2. C. Guillemot, "Transparent optical packet switching: The European ACTS KEOPS project approach," J. Lightw. Technol. 16, 2117-2134 (1998).
  3. A. Carena, M. D. Vaughn, R. Gaudino, M. Shell, D. J. Blumenthal, "OPERA: An optical packet experimental routing architecture with label swapping capability," J. Lightw. Technol. 16, 2135-2145 (1998).
  4. K. Vlachos, I. T. Monroy, A. M. J. Koonen, C. Peucheret, P. Jeppesen, "STOLAS: Switching technologies for optically labeled signals," IEEE Commun. Mag. 41, 43-49 (2003).
  5. D. J. Blumenthal, "All-optical label swapping networks and technologies," J. Lightw. Technol. 18, 2058-2075 (2000).
  6. L. Dittmann, "The European IST project DAVID: A viable approach toward optical packet switching," IEEE J. Sel. Areas Commun. 21, 1026-1040 (2003).
  7. F. Ramos, "IST-LASAGNE: Towards all-optical label swapping employing optical logic gates and optical flip-flops," J. Lightw. Technol.—Special Issue Optical Networks 23, 2993-3011 (2005).
  8. K. Vyrsokinos, "ARTEMIS: A new architecture for all-optical asynchronous self-routing network with efficient contention protection and QoS differentiation," Proc. Eur. Conf. Opt. Commun. (2005) pp. 667-668.
  9. A. Lattes, "An ultrafast all-optical gate," IEEE J. Quantum Electron. QE-19, 1718-1723 (1983).
  10. N. J. Doran, D. Wood, "Nonlinear-optical loop mirror," Opt. Lett. 13, 56 (1988).
  11. A. Huang, "Sagnac fiber logic gates and their possible applications: A system perspective," Appl. Opt. 33, 6254-6267 (1994).
  12. M. J. LaGasse, D. Liu-Wong, J. G. Fujimoto, H. A. Haus, "Ultrafast switching with a single-fiber interferometer," Opt. Lett. 14, 311-313 (1989).
  13. K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Topics Quantum Electron. 6, 1428-1435 (2000).
  14. B. Glance, "High performance optical wavelength shifter," Electron. Lett. 28, 1714-1715 (1992).
  15. K. Tajima, "All-optical switch with switch-off time unrestricted by carrier lifetime," Jpn. J. Appl. Phys. 32, L1746-L1749 (1993).
  16. N. S. Patel, K. L. Hall, K. A. Rauschenbach, "40-Gb/s cascadable all-optical logic with an ultrafast nonlinear interferometer," Opt. Lett. 21, 1046-1048 (1996).
  17. M. Eiselt, W. Pieper, H. G. Weber, "SLALOM: Semiconductor laser amplifier in a loop mirror," J. Lightw. Technol. 13, 2099-2112 (1995).
  18. J. P. Sokoloff, P. R. Pruncal, I. Glesk, M. Kane, "A terahertz optical asymmetric demultiplexer," Photon. Technol. Lett. 5, 787-790 (1993).
  19. G. Maxwell, "Very low coupling loss, hybrid-integrated all-optical regenerator with passive assembly," European Conf. Optical Communication CopenhagenDenmark (2000) Paper PD3.5.
  20. K. L. Hall, K. A. Rauschenbach, "100-Gb/s bitwise logic," Opt. Lett. 23, 1271-1273 (1998).
  21. C. Bintjas, "20 Gbps all-optical XOR with UNI gate," IEEE Photon. Technol. Lett. 14, 834-836 (2000).
  22. S. Nakamura, Y. Ueno, K. Tajima, "168-Gb/s all-optical wavelength conversion with a symmetric-Mach–Zehnder-type switch," IEEE Photon. Technol. Lett. 13, 1091-1093 (2001).
  23. D. Wolfson, "All-optical wavelength conversion scheme in SOA-based interferometric devices," Electron. Lett. 36, 1794-1795 (2000).
  24. J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, "100 Gb/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
  25. M. L. Nielsen, "40 Gb/s standard-mode wavelength conversion in all-active MZI with very fast response," Electron. Lett. 39, 385-386 (2003).
  26. O. Leclerc, "Optical regeneration at 40 Gb/s and beyond," J. Lightw. Technol. 21, 2779-2790 (2003).
  27. B. S. Robinson, S. A. Hamilton, E. P. Ippen, "Multiple wavelength demultiplexing using an ultrafast nonlinear interferometer," Proc. CLEO (2001) pp. 528.
  28. M. Saruwatori, "All-optical signal processing in ultrahigh-speed optical transmission," IEEE Commun. Mag. 32, 98-105 (1994).
  29. S. Diez, "160 Gb/s all-optical demultiplexer using hybrid gain transparent SOA Mach–Zehnder interferometer," Electron. Lett. 36, 1484-1486 (2000).
  30. Y. Liu, "Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering," Optical Fiber Communications Conf. AnaheimCA (2006) Post-deadline Paper PD-28.
  31. J. P. Turkiewicz, "160 Gb/s OTDM networking using deployed fibers," J. Lightw. Technol. 23, 225-235 (2005).
  32. A. J. Poustie, K. J. Blow, A. E. Kelly, R. J. Manning, "All-optical full adder with bit-differential delay," Opt. Commun. 168, 89-93 (1999).
  33. N. Calabretta, H. deWaardt, G. D. Khoe, H. J. S. Dorren, "Ultrafast asynchronous multioutput all-optical header processor," IEEE Photon. Technol. Lett. 16, 1182-1184 (2004).
  34. M. Daikoku, N. Yoshikane, T. Otani, H. Tanaka, "Optical 40-Gb/s 3R regenerator with a combination of the SPM and XAM effects for all-optical networks," J. Lightw. Technol. 24, 1142-1148 (2006).
  35. B. Lavigne, "Low input power all-optical 3R regenerator based on SOA devices for 42.66 Gb/s ULH WDM RZ transmissions with 23 dB span loss and all-EDFA amplification," Proc. Opt. Fiber Commun. Conf. (2003) pp. PD15-P1-3.
  36. J. Slovak, C. Bornholdt, B. Sartorius, "All-optical 3R regenerator for asynchronous data packets at 40 Gb/s," Proc. Eur. Conf. Opt. Commun. (2004) pp. 388-389.
  37. O. Leclerc, "Optical regeneration at 40 Gb/s and beyond," J. Lightw. Technol. 21, 2779-2790 (2003).
  38. A. Poustie, R. Wyatt, R. McDougall, G. Maxwell, B. R. Hemenway, "Optical timing jitter transfer characteristics of a 40 Gb/s hybrid integrated SOA-Mach–Zehnder interferometer all-optical regenerator," European Conf. Optical Communication GlasgowU.K. (2005) We.2.5.7.
  39. P. Bakopoulos, "Compact all-optical packet clock and data recovery circuit using generic integrated MZI switches," Opt. Express 13, 6401-6406 (2005).
  40. C. Bintjas, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14, 1728-1730 (2002).
  41. Y. M. Lin, W. I. Way, G. K. Chang, "A novel optical label swapping technique using erasable optical single-sideband subcarrier label," IEEE Photon. Technol. Lett. 12, 1088-1090 (2000).
  42. N. Chi, Z. Jianfeng, P. Jeppesen, "All-optical subcarrier labeling based on the carrier suppression of the payload," IEEE Photon. Technol. Lett. 15, 781-783 (2003).
  43. C. W. Chow, H. K. Tsang, "Orthogonal label switching using polarization-shift-keying payload and amplitude-shift-keying label," IEEE Photon. Technol. Lett. 17, 2475-2477 (2005).
  44. K. Vlachos, "An optical IM/FSK coding technique for the implementation of a label-controlled arrayed waveguide packet router," J. Lightw. Technol. 21, 2617-2628 (2003).
  45. N. Chi, "Transmission and label encoding/erasure of orthogonally labelled signal using 40 Gb/s RZ-DPSK payload and 2.5 Gb/s IM label," Electron. Lett. 39, 1335-1337 (2003).
  46. J. M. Martinez, "All-optical address recognition scheme for label-swapping networks," IEEE Photon. Technol. Lett. 18, 151-153 (2006).
  47. Y. Liu, "Demonstration of a variable optical delay for a recirculating buffer by using all-optical signal processing," Photon. Technol. Lett. 16, 1748-1750 (2004).
  48. G. Maxwell, "WDM-enabled, 40 Gb/s hybrid integrated all-optical regenerator," Proc. Eur. Conf. Optical Commun. (2005) pp. 15-16.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited