OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 4918–4924

Coherent Optical Logic by Laser Amplifiers With Feedback

Jani Oksanen and Jukka Tulkki

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4918-4924 (2006)


View Full Text Article

Acrobat PDF (1111 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

An optical decision circuit is constructed by modifying the stability conditions of a previously introduced optical flip-flop memory (Appl. Phys. Lett., vol. 88, p. 181 118, May 2005). The simulations using a rate-equation model of the circuit predict fast operation speed (rise and fall times of the order of 20 ps are reached), which is most likely beyond the capabilities of recent semiconductor decision circuits that are suitable for integration (J. Lightw. Technol., vol. 24, p. 642, Mar. 2005). The decision characteristics are also better and close to the ideal digital response. They also enable realizing optical logic gates by using an interferometer and a single decision circuit. The output characteristics of an and and an or gate realized using the decision circuit are also studied.

© 2006 IEEE

Citation
Jani Oksanen and Jukka Tulkki, "Coherent Optical Logic by Laser Amplifiers With Feedback," J. Lightwave Technol. 24, 4918-4924 (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-12-4918


Sort:  Journal  |  Reset

References

  1. J. Oksanen, J. Tulkki, "A fast coherent all-optical flip-flop memory," Appl. Phys. Lett. 88, 181 118 (2005).
  2. W. D'Oosterlinck, G. Morthier, M. K. Smit, R. Baets, "Very steep optical thresholding characteristic using a DFB laser diode and an SOA in an optical feedback scheme," J. Lightw. Technol. 24, 642-644 (2005).
  3. T. H. Maiman, "Stimulated optical radiation in ruby," Nature 187, 493-494 (1960).
  4. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, "Generation of optical harmonics," Phys. Rev. Lett. 7, 118-119 (1961).
  5. R. Chiao, C. H. Townes, B. P. Stoicheff, "Stimulated brillouin scattering and coherent generation of intense hypersonic waves," Phys. Rev. Lett. 12, 592-595 (1964).
  6. A. Szöke, J. Daneu, J. Goldhar, N. A. Kurnit, "Bistable optical element and its applications," Appl. Phys. Lett. 15, 376-379 (1969).
  7. A. A. Shawchuk, T. C. Strand, "Digital optical computing," Proc. IEEE 72, 758-779 (1984).
  8. M. N. Sriharshavardhan, "Optical computers," IEEE Potentials 15, 17-20 (1996).
  9. A. Jajszczyk, "Optical networks—The electro-optic reality," Opt. Switch. Netw. 1, 3-18 (2005).
  10. H. J. Caulfield, "Perspectives in optical computing," Computer 31, 22-25 (1998).
  11. F. Ramos, E. Kehayas, J. M. Martinez, R. Clavero, J. Marti, L. Stampoulidis, D. Tsiokos, H. Avramopoulos, J. Zhang, P. V. Holm-Nielsen, N. Chi, P. Jeppesen, N. Yan, I. T. Monroy, A. M. J. Koonen, M. T. Hill, Y. Liu, H. J. S. Dorren, R. V. Caenegem, D. Colle, M. Pickavet, B. Riposati, "IST-LASAGNE: Towards all-optical label swapping employing optical logic gates and optical flip-flops," J. Lightw. Technol. 23, 2993-3011 (2005).
  12. M. Forbes, J. Gourlay, M. Desmulliez, "Optically interconnected electronic chips: A tutorial and review of the technology," Electron. Commun. Eng. J. 13, 221-232 (2001).
  13. D. J. Blumenthal, J. E. Bowers, L. Rau, H.-F. Chou, S. Rangarajan, W. Wang, H. N. Poulsen, "Optical signal processing for optical packet switching networks," IEEE Commun. Mag. 41, S23-S29 (2003).
  14. M. Soljačić, J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004).
  15. A. Bogoni, L. Potí, R. Proietti, G. Meloni, F. Ponzini, P. Ghelfi, "Regenerative and reconfigurable all-optical logic gates for ultra-fast applications," Electron. Lett. 41, 435-436 (2005).
  16. M. T. Hill, H. de Waardt, G. Khoe, H. Dorren, "All-optical flip-flop based on coupled laser diodes," IEEE J. Quantum Electron. 37, 405-413 (2001).
  17. G. Morthier, M. Zhao, B. Vanderhaegen, R. Baets, "Experimental demonstration of an all-optical 2R regenerator with adjustable decision threshold and ‘true’ regeneration characteristics," IEEE Photon. Technol. Lett. 12, 1516-1518 (2000).
  18. M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
  19. J. Oksanen, J. Tulkki, "Fast all-optical flip-flop memory exploiting the electric field nonlinearity of coherent laser amplifiers," IEEE J. Quantum Electron. 42, 509-516 (2006).
  20. J. Oksanen, J. Tulkki, "Fast 2R regeneration by coherent laser amplifiers," IEEE J. Quantum Electron. 41, 1075-1082 (2005).
  21. T. Segawa, S. Matsuo, Y. Ohiso, T. Ishii, Y. Shibata, H. Suzuki, "Fast tunable optical filter using cascaded Mach–Zehnder interferometers with apodized sampled gratings," IEEE Photon. Technol. Lett. 17, 139-141 (2005).
  22. R. Ramaswami, K. N. Sivarajan, Optical Networks, A Practical Perspective (Morgan Kaufmann, 1998).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited