OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 5000–5007

A Novel Optochemical Sensor Based on SnO2 Sensitive Thin Film for ppm Ammonia Detection in Liquid Environment

Marco Pisco, Marco Consales, Stefania Campopiano, Roman Viter, Valentin Smyntyna, Michele Giordano, and Andrea Cusano

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 5000-5007 (2006)


View Full Text Article

Acrobat PDF (832 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, a fiber optic sensing system, designed, and developed for the detection of ammonia in aqueous ambient at room temperature, is presented. The sensor is constituted by a standard silica optical fiber (SOF) coated by a tin dioxide sensitive layer. The SnO2 films have been transferred onto the distal end of the SOF by means of the simple and low-cost electrostatic-spray-pyrolysis deposition technique. The spectral characterization of the fabricated samples has been carried out in the wavelength range 400–1750 nm in order to estimate the thickness of the SnO2 fiber coatings. The morphology and the elemental composition of the deposited layers have also been investigated by means of scanning-electron-microscopy observation and energy-dispersive-spectrometer analysis, respectively. Single-wavelength reflectance measurements have been carried out to test the sensing performances of the realized sensors toward ammonia traces in water. A fiber-Bragg-grating temperature sensor has also been used for monitoring the temperature changes occurring inside the test ambient during the experimental measurements, in order to identify the effects of thermal drifts on the sensor response. The results here presented demonstrate that the developed refractometric chemical sensor is able to provide measurements of ammonia concentration in water and at room temperature with a high sensitivity, response times of few minutes, and a resolution as low as 2 ppm.

© 2006 IEEE

Citation
Marco Pisco, Marco Consales, Stefania Campopiano, Roman Viter, Valentin Smyntyna, Michele Giordano, and Andrea Cusano, "A Novel Optochemical Sensor Based on SnO2 Sensitive Thin Film for ppm Ammonia Detection in Liquid Environment," J. Lightwave Technol. 24, 5000-5007 (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-12-5000

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited