Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 4,
  • pp. 1703-
  • (2006)

Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction With Optimized Modulation

Not Accessible

Your library or personal account may give you access

Abstract

The authors demonstrate a simple passive technique for increasing the transmission distance in fiber wireless links through the application of a narrowband fiber Bragg grating (FBG) with high reflectivity (90-99%). They are applied in a conventional downstream link and also for the upstream in a wavelength-reused scheme. In the conventional nonwavelength-reused system, the grating is used to optimize the optical modulation depth and, hence, the receiver sensitivity in the downstream transmitted signal by reducing the power of the optical carrier before fiber transmission. In the wavelength-reused systems, the highly reflective FBGs can be effectively used at the base stations to recover a major portion of the optical carrier (as high as 99% of the downlink carrier) for uplink transmission from a weakly modulated downstream signal. In the latter case, the penalty in the downstream signal due to the large extraction of carrier power is partially offset by the sensitivity enhancement obtained in the filtering process. The authors present experimental results for the increased transmission performance for both the nonwavelength-reused and wavelength-reused scenarios. The increase in the sensitivity (at {bit error rate} = 10<sup>-9</sup>) in the nonwavelength-reused scheme for a given launch channel power that facilitates the increased transmission distance can be as large as 7 dB. The relative increase in the power margin for the upstream signal can be up to 4 dB in the wavelength-reused scheme. This would more than double the currently demonstrated transmission distances in such wavelength-reused systems without any optical amplification. The scheme is applicable to a wide range of radio frequencies and modulation depths.

© 2006 IEEE

PDF Article
More Like This
A Full duplex radio-over-fiber link with Multi-level OFDM signal via a single-electrode MZM and wavelength reuse with a RSOA

Wen-Jr Jiang, Chun-Ting Lin, Po-Tsung Shih, Jason (Jyehong) Chen, Peng-Chun Peng, and Sien Chi
Opt. Express 18(3) 2710-2718 (2010)

High dynamic range and wavelength-reused bidirectional radio-over-fiber link

Nianqiang Li and Jianping Yao
Opt. Lett. 44(6) 1331-1334 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved