Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 7,
  • pp. 2558-
  • (2006)

Novel Photonic Recursive Signal Processor With Reduced Phase-Induced Intensity Noise

Not Accessible

Your library or personal account may give you access

Abstract

A new technique to reduce the dominant phase-induced intensity noise (PIIN) in active high-Q recursive photonic signal processors is presented. This is based on using cross-gain-modulation effects in a semiconductor optical amplifier in the recursive loop of the processor. Two different laser sources are used, and no recombination of the optical power from the same laser source occurs in the optical domain, hence, PIIN generation is suppressed. The processor structure also features the advantage that it does not require an incoherent light source. Hence, the free spectral range of the processor is not limited by the coherence of the laser source, as in existing incoherent approaches. Experimental results for the new processor demonstrate a more-than-30-dB reduction in PIIN level for a high-Q bandpass filter, compared to the conventional approach for the same filtering parameters.

© 2006 IEEE

PDF Article
More Like This
New multiple-tap, general-response, reconfigurable photonic signal processor

Thomas X. H. Huang, Xiaoke Yi, and Robert A. Minasian
Opt. Express 17(7) 5358-5363 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved