OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 24, Iss. 8 — Aug. 1, 2006
  • pp: 3059–

Phase-Induced Intensity Noise in Digital Incoherent All-Optical Tapped-Delay Line Systems

Mohammad M. Rad and Jawad A. Salehi

Journal of Lightwave Technology, Vol. 24, Issue 8, pp. 3059- (2006)

View Full Text Article

Acrobat PDF (297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, the authors analyze conditions under which they can be certain on the intensity addition of a given device, such as tapped-delay lines, used in digital incoherent all-optical communication systems. A general expression for phase-induced intensity noise that is applicable to all types of semiconductor lasers is derived by defining an optical self-SNR expression that can be used to analyze and measure phase-induced intensity noise. The result shows that in order to have a minimal phase-induced intensity noise in most digital optical incoherent systems, a large optical self-SNR, e.g., 20 dB or more, is needed. This in turn is shown to place a limit on the maximum rate of processing in a typical incoherent optical system even neglecting the bandwidth limitation of the photodetector. Furthermore, it is shown that the maximum rate of processing depends on the laser autocorrelation function and laser coherence time.

© 2006 IEEE

Mohammad M. Rad and Jawad A. Salehi, "Phase-Induced Intensity Noise in Digital Incoherent All-Optical Tapped-Delay Line Systems," J. Lightwave Technol. 24, 3059- (2006)

Sort:  Journal  |  Reset


  1. P. J. Smith, M. Shafi and C. P. Kaiser, "Optical heterodyne binary-DPSK systems: A review of analysis and performance", IEEE J. Sel. Areas Commun., vol. 13, no. 3, pp. 557-568, Apr. 1995.
  2. J. Salz, "Coherent lightwave communication", AT&T Tech. J., vol. 64, no. 10, pp. 2153-2209, Dec. 1985.
  3. L. G. Kazovsky, "Impact of laser phase noise on optical heterodyne communication systems", J. Opt. Commun., vol. 7, no. 2, pp. 66-77, 1986.
  4. G. Jacobsen and I. Garrett, "Error-Rate floor in optical ASK heterodyne systems caused by nonzero semiconductor laser linewidth", Electron. Lett., vol. 21, no. 7, pp. 268-270, Mar. 1985.
  5. G. Jacobsen, B. Jensen, I. Garrett and J. B. Waite, "Bit error rate floors in coherent optical systems with delay modulation", Electron. Lett., vol. 25, no. 21, pp. 1425-1427, Oct. 1989.
  6. G. J. Foschini, L. J. Greenstein and G. Vannucci, "Noncoherent detection of coherent lightwave signals corrupted by phase noise", IEEE Trans. Commun., vol. 36, no. 3, pp. 306-314, Mar. 1988.
  7. K.-P. Ho, Phase-Modulated Optical Communication, New York: Springer-Verlag, 2004.
  8. G. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Boston, MA: Artech House, 2002.
  9. G. Jacobsen, Noise in Digital Optical Transmission Systems, Boston, MA: Artech House, 1994.
  10. K. Peterman and E. Weidel, "Semiconductor laser noise in an interferometer system", IEEE J. Quantum Electron., vol. QE-17, no. 7, pp. 1251-1256, Jul. 1981.
  11. R. W. Tkach and A. R. Chraplyvy, "Phase noise and linewidth in an InGaAsP DFB laser", J. Lightw. Technol., vol. LT-4, no. 11, pp. 1711-1716, Nov. 1986.
  12. M. Tur, B. Moslehi and J. W. Goodman, "Theory of laser phase noise in recirculating fiber-optic delay lines", J. Lightw. Technol., vol. LT-3, no. 1, pp. 20-31, Feb. 1985.
  13. M. Tur and A. Arie, "Phase induced intensity noise in concatenated fiber optic delay lines", J. Lightw. Technol., vol. 6, no. 1, pp. 120-130, Jan. 1988.
  14. M. Tur, E. Shafir and K. Blotekjaer, "Source-induced noise in optical systems driven by low coherence source", J. Lightw. Technol., vol. 8, no. 2, pp. 183-189, Feb. 1990.
  15. B. Moslehi, "Analysis of optical phase noise in fiber-optic systems employing a laser source with arbirary coherence time", J. Lightw. Technol., vol. LT-4, no. 9, pp. 1334-1351, Sep. 1986.
  16. B. Moslehi, "Noise power spectra of optical two-beam interferometer induced by the laser phase noise", J. Lightw. Technol., vol. LT-4, no. 11, pp. 1704-1710, Nov. 1986.
  17. A. Arie and M. Tur, "Phase-induced intensity noise in optical interferometers excited by semiconductor laser with non-lorentzian lineshape", J. Lightw. Technol., vol. 8, no. 1, pp. 1-6, Jan. 1990.
  18. J. W. Goodman, Statistical Optics, New York: Wiley, 1985.
  19. A. Papoulis and S. U. Pillai, Probability Random Variables and Stochastic Processes, 4th ed. New York: McGraw-Hill, 2002.
  20. W. V. Etten, "The ergodicy of laser light in connection with optical fiber transmission", Opt. Quantum Electron., vol. 13, pp. 519-521, 1981.
  21. C. H. Henry, "Theory of phase noise and power spectrum of a single-mode injection laser", IEEE J. Quantum Electron., vol. QE-19, no. 9, pp. 1391-1397, Sep. 1983.
  22. W. K. Partt, Laser Communication Systems, Hoboken, NJ: Wiley, 1969.
  23. C. H. Henry, "Theory of laser linewidth of semiconductor lasers", IEEE J. Quantum Electron., vol. QE-18, no. 2, pp. 259-264, Feb. 1982.
  24. G. Einarsson, Principles of Lightwave Communications, New York: McGraw-Hill, 1996.
  25. J. A. Salehi, "Code division multiple-access techniques in optical fiber networks-Part I: Fudamental principles", IEEE Trans. Commun., vol. 37, no. 8, pp. 824-833, Aug.1989.
  26. S. Zahedi and J. A. Salehi, "Analytical comparision of various optical CDMA receiver structures", J. Lightw. Technol., vol. 18, no. 12, pp. 1718-1727, Dec. 2000.
  27. S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida and H. Wakabayashi, "Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission", J. Lightw. Technol., vol. 8, no. 11, pp. 1716-1722, Nov. 1990.
  28. J. A. Salehi, R. C. Menedez and C. A. Brackett, "A low-pass digital optical filter for optical fiber communication", J. Lightw. Technol., vol. 6, no. 12, pp. 1841-1847, Dec. 1988.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited