OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 24, Iss. 8 — Aug. 1, 2006
  • pp: 3137–

Rayleigh and Mie Scattering in Polymer Optical Fibers

Christian-Alexander Bunge, Roman Kruglov, and Hans Poisel

Journal of Lightwave Technology, Vol. 24, Issue 8, pp. 3137- (2006)

View Full Text Article

Acrobat PDF (436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this article, the influence of Rayleigh and Mie scattering, which are the main causes of mode mixing in polymer optical fibers (POFs), is investigated. Measurement results obtained from a variety of different POF types ranging from standard POF, high-temperature POF, up to custom-made POF are presented. These measurements are compared to theoretical results obtained from a simplified scattering model. By comparing both results, the contribution of the different scattering sources and mechanisms is characterized independently.

© 2006 IEEE

Christian-Alexander Bunge, Roman Kruglov, and Hans Poisel, "Rayleigh and Mie Scattering in Polymer Optical Fibers," J. Lightwave Technol. 24, 3137- (2006)

Sort:  Journal  |  Reset


  1. W. White, M. Düser, W. Reed and T. Onishi, "Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber", IEEE Photon. Technol. Lett., vol. 11, no. 8, pp. 997-999, Aug. 1999.
  2. R. F. Shi, C. Koeppen, G. Jiang, J. Wang and A. Garito, "Origin of high bandwidth performance of graded-index plastic optical fibers", Appl. Phys. Lett., vol. 71, no. 25, pp. 2627-3625, Dec. 1997.
  3. J. Zubia and J. Arrue, "Plastic optical fibers: An introduction to their technological processes and applications", Opt. Fiber Technol., vol. 7, no. 2, pp. 101-140, Apr. 2001.
  4. W. Daum, P. Krauser, P. Zamzow and O. Ziemann, POF-Polymer Optical Fibers for Data Communication, Berlin: Germany: Springer-Verlag, 2002.
  5. D. Gloge, "Optical power flow in multimode fibers", Bell Syst. Tech. J., vol. 51, no. 10, pp. 1767-1783, Oct. 1972.
  6. R. Olshansky, "Mode coupling effects in graded-index optical fibers", Appl. Optics, vol. 14, no. 4, pp. 935-945, Apr. 1975.
  7. A. W. Snyder and J. D. Love, Optical Waveguide Theory, London: U.K.: Chapman and Hall, 1983.
  8. J. Zubia, H. Poisel, C.-A. Bunge, G. Aldabaldetreku and J. Arrue, "POF modelling", in Proc. Int. POF Conf., Tokyo, Japan, 2002, pp. 221-224.
  9. J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, C.-A. Bunge and H. Poisel, "Geometric optics analysis of multi-step index optical fibers", Fiber Integr. Opt., vol. 23, no. 2/3, pp. 121-156, 2004.
  10. R. Olshansky, "Propagation in glass optical waveguides", Rev. Mod. Phys., vol. 51, no. 2, pp. 341-367, Apr. 1979.
  11. S. Maruo, M. Kawase and J. Yoshida, "Mode mixing experiments on high NA POFs", in Proc. Intern. POF Conf., Cambridge, MA, Sep. 2000, pp. 190-194.
  12. C.-A. Bunge, O. Ziemann, J. Krauser and K. Petermann, "Effects of light propagation in step-index polymer optical fibers", in Proc. Intern. POF Conf., Chiba, Japan, 1999, pp. 136-139.
  13. C.-A. Bunge, C. Hahn, K. Petermann, H. Poisel, O. Ziemann and J. Zubia, "Models for transmission and attenuation characteristics of step-index polymer optical fibres", in Proc. Intern. POF Conf., Amsterdam, The Netherlands,Sep. 2001, pp. 121-124.
  14. M. Losada, I. Garces, J. Mateo, I. Salinas, J. Lou and J. Zubia, "Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers", J. Lightw. Technol., vol. 20, no. 7, p. 1160, Jul. 2002.
  15. A. Ankiewicz and C. Pask, "Geometric optics approach to light acceptance and propagation in graded index fibres", Opt. Quantum Electron., vol. 9, no. 2, pp. 87-109, Mar. 1977.
  16. M. S. Kovacevic, D. Nikezic and A. Djordjevich, "Modeling of the loss and mode coupling due to an irregular core-cladding interface in step-index plastic optical fibers", Appl. Opt., vol. 44, no. 19, pp. 3898-3903, Jul. 2005.
  17. M. Tekelioglu and B. D. Wood, "Prediction of light-transmission losses in plastic optical fibers", Appl. Opt., vol. 44, no. 12, pp. 2318-2326, Apr. 2005.
  18. K. Yoon, M. Tateiba and K. Uchida, "Ray tracing analysis of large-scale random rough surface scattering and delay spread", IEICE Trans. Electron., vol. E84-C, no. 2, pp. 267-270, Feb. 2001.
  19. T. Bierhoff, A. Wallrabenstein, A. Himmler, E. Griese and G. Mrozynski, "Ray tracing technique and its verification for the analysis of highly multimode optical waveguides with rough surfaces", IEEE Trans. Magn., vol. 17, no. 5, pp. 3307-3310, Sep. 2001.
  20. H. van de Hulst, Light Scattering by Small Particles, New York: Dover, 1982.
  21. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, New York: Academic, 1969.
  22. W. Irvine, "Light scattering by spherical particles: Radiation pressure, asymmetry factor and extinction cross section", J. Opt. Soc. Amer., vol. 55, no. 1, pp. 16-21, 1965.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited