OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 1 — Jan. 1, 2007
  • pp: 109–121

Recent Advances in Telecommunications Avalanche Photodiodes

Joe C. Campbell

Journal of Lightwave Technology, Vol. 25, Issue 1, pp. 109-121 (2007)


View Full Text Article

Acrobat PDF (1510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

For high-bit-rate long-haul fiber optic communications, the avalanche photodiode (APD) is frequently the photodetector of choice owing to its internal gain, which provides a sensitivity margin relative to PIN photodiodes. APDs can achieve 5–10-dB better sensitivity than PINs, provided that the multiplication noise is low and the gain-bandwidth product is sufficiently high. In the past decade, the performance of APDs for optical fiber communication systems has improved as a result of improvements in materials and the development of advanced device structures. This paper presents a brief review of APD fundamentals and describes some of the significant advances.

© 2007 IEEE

Citation
Joe C. Campbell, "Recent Advances in Telecommunications Avalanche Photodiodes," J. Lightwave Technol. 25, 109-121 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-1-109


Sort:  Year  |  Journal  |  Reset

References

  1. S. D. Personick, "Receiver design for digital fiber-optic communication systems, Parts I and II," Bell Syst. Tech. J. 52, 843-886 (1973).
  2. R. G. Smith, S. D. Personick, Semiconductor Devices for Optical Communication (Springer-Verlag, 1980).
  3. S. R. Forrest, Semiconductors and Semimetals (Academic, 1985).
  4. B. L. Kasper, J. C. Campbell, "Multigigabit-per-second avalanche photodiode lightwave receivers," J. Lightw. Technol. LT-5, 1351-1364 (1987).
  5. H. Melchior, A. R. Hartman, D. P. Schinke, T. E. Seidel, "Planar epitaxial silicon avalanche photodiode," Bell Syst. Tech. J. 57, 1791-1807 (1978).
  6. S. R. Forrest, M. DiDomenico, Jr.R. G. Smith, H. J. Stocker, "Evidence of tunneling in reverse-bias III–V photodetector diodes," Appl. Phys. Lett. 36, 580-582 (1980).
  7. H. Ando, H. Kaaba, M. Ito, T. Kaneda, "Tunneling current in InGaAs and optimum design for InGaAs/InP avalanche photo-diodes ," Jpn. J. Appl. Phys. 19, L277-L280 (1980).
  8. K. Nishida, K. Taguchi, Y. Matsumoto, "InGaAsP heterojunction avalanche photodiodes with high avalanche gain," Appl. Phys. Lett. 35, 251-253 (1979).
  9. S. R. Forrest, O. K. Kim, R. G. Smith, "Optical response time of $\hbox{In}_{0.53}\hbox{Ga}_{0.47}\hbox{As}$ avalanche photodiodes," Appl. Phys. Lett. 41, 95-98 (1982).
  10. F. Capasso, H. M. Cox, A. I. Hutchinson, N. A. Olson, S. G. Hummel, "Pseudo-quaternary GaInAsP semiconductors: A new $\hbox{Ga}_{0.47} \hbox{In}_{0.53}\hbox{As}/\hbox{InP}$ graded gap superlattice and its applications to avalanche photodiodes," Appl. Phys. Lett. 45, 1193-1195 (1984).
  11. H. Kuwatsuka, Y. Kito, T. Uchida, T. Mikawa, "High-speed InP/InGaAs avalanche photodiodes with a compositionally graded quaternary layer ," IEEE Photon. Technol. Lett. 3, 1113-1114 (1991).
  12. J. C. Campbell, A. G. Dentai, W. S. Holden, B. L. Kasper, "High-performance avalanche photodiode with separate absorption, grading, and multiplication regions," Electron. Lett. 18, 818-820 (1983).
  13. Y. Matsushima, A. Akiba, K. Sakai, K. Kushirn, Y. Node, K. Utaka, "High-speed response InGaAs/InP heterostructure avalanche photodiode with InGaAsP buffer layers ," Electron. Lett. 18, 945-946 (1982).
  14. F. Capasso, A. Y. Cho, P. W. Foy, "Low-dark-current low-voltage 1.3–1.6 μm avalanche photodiode with high-low electric field profile and separate absorption and multiplication regions by molecular beam epitaxy," Electron. Lett. 20, 635-637 (1984).
  15. P. Webb, R. McIntyre, J. Scheibling, M. Holunga, "A planar InGaAs APD fabricated using Si implantation and regrowth techniques," Tech. Dig. Opt. Fiber Conf. (1988) pp. 129.
  16. L. E. Tarof, "Planar InP-InGaAs avalanche photodetectors with n- multiplication layer exhibiting a very high gain-bandwidth product," IEEE Photon. Technol. Lett. 2, 643-646 (1990).
  17. H. W. Ruegg, "An optimized avalanche photodiode," IEEE Trans. Electron Devices ED-14, 239-251 (1967).
  18. K. Taguchi, T. Torikai, Y. Sugimoto, K. Makita, H. Ishihara, "Planar-structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0–1.6 μm wavelength optical communication use ," J. Lightw. Technol. 6, 1643-1655 (1988).
  19. Y. Matsushima, Y. Noda, Y. Kushiro, N. Seki, S. Akiba, "High sensitivity of VPE-grown InGaAs/InP-heterostructure APD with buffer layer and guard-ring structure," Electron. Lett. 20, 235-236 (1984).
  20. J. N. Hollenhorst, D. T. Ekholm, J. M. Geary, V. D. Mattera, Jr.R. Pawalek, "High frequency performance of planar InGaAs/InP APDs," Proc. SPIE, High Freq. Analog Commun. (1988) pp. 53-60.
  21. Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, D. E. Ackly, "A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction ," J. Lightw. Technol. 10, 182-193 (1992).
  22. M. A. Itzler, K. K. Loi, S. McCoy, N. Codd, N. Komaba, "Manufacturable planar bulk-InP avalanche photodiodes for 10 Gb/s applications," Proc. LEOS (1999) pp. 748-749.
  23. S. R. Cho, S. K. Yang, J. S. Ma, S. D. Lee, J. S. Yu, A. G. Choo, T. I. Kim, J. Burm, "Suppression of avalanche multiplication at the periphery of diffused junction by floating guard rings in a planar In-GaAs-InP avalanche photodiode," IEEE Photon. Technol. Lett. 12, 534-536 (2000).
  24. J. Wei, J. C. Dries, H. Wang, M. L. Lange, G. H. Olsen, S. R. Forrest, "Optimization of 10-Gb/s long-wavelength floating guard ring InGaAs-InP avalanche photodiodes ," IEEE Photon. Technol. Lett. 14, 977-979 (2002).
  25. L. E. Tarof, D. G. Knight, K. E. Fox, C. J. Miner, N. Puetz, H. B. Kim, "Planar InPAnGaAs avalanche photodiodes with partial charge sheet in device periphery ," Appl. Phys. Lett. 57, 670-672 (1990).
  26. L. E. Tarof, R. Bruce, D. G. Knight, J. Yu, H. B. Kim, T. Baird, "Planar InP-InGaAs single growth avalanche photodiodes with no guard rings," IEEE Photon. Technol. Lett. 7, 1330-1332 (1995).
  27. C. Y. Park, K. S. Hyun, S. K. Kang, M. K. Song, T. Y. Yoon, H. M. Kim, H. M. Park, S.-C. Park, Y. H. Lee, C. Lee, J. B. Yoo, "High-performance InGaAs/InP photodiode for 2.5 Gb/s optical receiver," Opt. Quantum Electron. 24, 553-559 (1995).
  28. G. Hasnain, W. G. Bi, S. Song, J. T. Anderson, N. Moll, C.-Y. Su, J. N. Hollenhorst, N. D. Baynes, I. Athroll, S. Amos, R. M. Ash, "Buried-mesa avalanche photodiodes," IEEE J. Quantum Electron. 34, 2321-2326 (1998).
  29. M. A. Itzler, C. S. Wang, S. McCoy, N. Codd, N. Komaba, "Planar bulk InP avalanche photodiode design for 2.5 and 10 Gb/s applications," Proc. 24th ECOC (1998) pp. 59-60.
  30. D. A. Humphreys, R. J. King, "Measurement of absorption coefficients of $\hbox{Ga}_{0.47}\hbox{In}_{0.53} \hbox{As}$ over the wavelength range 1.0–1.7 μm," Electron. Lett. 21, 1187-1189 (1985).
  31. F. R. Bacher, J. S. Blakemore, J. T. Ebner, J. R. Arthur, "Optical-absorption coefficient of $\hbox{In}_{1 - {\rm x}}\hbox{Ga}_{\rm x} \hbox{As/InP}$," Phys. Rev. B, Condens. Matter 37, 2551-2557 (1988).
  32. C. A. Amiento, S. H. Groves, "Impact ionization in (100)-, (110)-, and (111)- oriented InP avalanche photodiodes," Appl. Phys. Lett. 43, 333-335 (1983).
  33. L. W. Cook, G. E. Bulman, G. E. Stillman, "Electron and hole ionization coefficients in InP determined by photomultiplication measurements ," Appl. Phys. Lett. 40, 589-591 (1982).
  34. R. J. McIntyre, "Multiplication noise in uniform avalanche diodes," IEEE Trans. Electron Devices ED-13, 164-168 (1966).
  35. R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: Theory," IEEE Trans. Electron Devices ED-19, 703-713 (1972).
  36. R. J. McIntyre, "Factors affecting the ultimate capabilities of high speed avalanche photodiodes and a review of the state-of-the-art," Tech. Dig. Int. Electron Devices Meeting (1973) pp. 213-216.
  37. Y. Okuto, C. R. Crowell, "Ionization coefficients in semiconductors: A nonlocalized property," Phys. Rev. B, Condens. Matter 10, 4284-4296 (1974).
  38. R. B. Emmons, "Avalanche-photodiode frequency response," J. Appl. Phys. 38, 3705-3714 (1967).
  39. C. A. Lee, R. A. Logan, R. L. Batdorf, J. J. Kleimack, W. Weigmann, "Ionization rates of holes and electrons in silicon," Phys. Rev. 134, A761-A773 (1964).
  40. J. Conradi, "The distributions of gains in uniformly multiplying avalanche photodiodes: Experimental ," IEEE Trans. Electron Devices ED-19, 713-718 (1972).
  41. W. N. Grant, "Electron and hole ionization rates in epitaxial silicon at high electric fields," Solid State Electron. 16, 1189-1203 (1973).
  42. T. Kaneda, H. Matsumoto, T. Yamaoka, "A model for reach-through avalanche photodiodes (RAPD's)," J. Appl. Phys. 47, 3135-3139 (1976).
  43. J. D. Beck, C. F. Wan, M. A. Kinch, J. E. Robinson, "MWIR HgCdTe avalanche photodiodes," Proc. SPIE Mater. Infrared Detectors (2001) pp. 188-197.
  44. J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, F. Ma, J. C. Campbell, "The HgCdTe electron avalanche photodiode," Proc. IEEE LEOS Annu. Meeting (2003) pp. 849-850.
  45. F. Ma, X. Li, J. C. Campbell, J. D. Beck, C.-F. Wan, M. A. Kinch, "Monte Carlo simulations of $\hbox{Hg}_{0.7}\hbox{Cd}_{0.3}\hbox{Te}$ avalanche photodiodes and resonance phenomenon in the multiplication noise," Appl. Phys. Lett. 83, 785-787 (2003).
  46. A. R. Hawkins, T. E. Reynolds, D. R. England, D. I. Babic, M. J. Mondry, K. Streubel, J. E. Bowers, "Silicon heterointerface photodetector," Appl. Phys. Lett. 68, 3692-3694 (1996).
  47. Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, Y. H. Lo, "Fused InGaAs-Si avalanche photodiodes with low-noise performances," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
  48. M. Bitter, Z. Pan, S. Kristjansson, L. Boman, R. Gold, A. Pauchard, "InGaAs-on-Si photodetectors for high-sensitivity detection," Proc. SPIE Infrared Technol. and Appl. XXX (2004) pp. 1-12.
  49. H.-W. Lee, A. R. Hawkins, "Solid-state current amplifier based on impact ionization," Appl. Phys. Lett. 87, 73 511-1-73 511-3 (2005).
  50. H.-W. Lee, J. L. Beutler, A. R. Hawkins, "Solid-state current amplifier based on impact ionization," Opt. Express 13, 8760-8765 (2005).
  51. H.-W. Lee, J. L. Beutler, A. R. Hawkins, "High gain effects for solid-state impact-ionization multipliers," IEEE J. Quantum Electron. 42, 471-476 (2006).
  52. M. M. Hayat, B. E. A. Saleh, M. C. Teich, "Effect of dead space on gain and noise of double-carrier multiplication avalanche photodiodes ," IEEE Trans. Electron Devices 39, 546-552 (1992).
  53. R. J. McIntyre, "A new look at impact ionization—Part 1: A theory of gain, noise, breakdown probability and frequency response," IEEE Trans. Electron Devices 48, 1623-1631 (1999).
  54. X. Li, X. Zheng, S. Wang, F. Ma, J. C. Campbell, "Calculation of gain and noise with dead space for GaAs and $\hbox{Al}_{\rm x} \hbox{Ga}_{1 - {\rm x}}\hbox{As}$ avalanche photodiodes," IEEE Trans. Electron Devices 49, 1112-1117 (2002).
  55. B. Jacob, P. N. Robson, J. P. R. David, G. J. Rees, "Fokker-Planck model for nonlocal impact ionization in semiconductors," J. Appl. Phys. 90, 1314-1317 (2001).
  56. A. Spinelli, A. L. Lacaita, "Mean gain of avalanche photodiodes in a dead space model," IEEE Trans. Electron Devices 43, 23-30 (1996).
  57. G. M. Dunn, G. J. Rees, J. P. R. David, S. A. Plimmer, D. C. Herbert, "Monte Carlo simulation of impact ionization and current multiplication in short GaAs $\hbox{p}^{+}\hbox{in}^{+}$ diodes," Semicond. Sci. Technol. 12, 111-120 (1997).
  58. D. S. Ong, K. F. Li, G. J. Rees, G. M. Dunn, J. P. R. David, P. N. Robson, "A Monte Carlo investigation of multiplication noise in thin $\hbox{p}^{+} \hbox{in}^{+}$ avalanche photodiodes," IEEE Trans. Electron Devices 45, 1804-1810 (1998).
  59. S. A. Plimmer, J. P. R. David, D. S. Ong, K. F. Li, "A simple model including the effects of dead space," IEEE Trans. Electron Devices 46, 769-775 (1999).
  60. J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, N. Tscherptner, "Recent advances in avalanche photodiodes," J. Sel. Topics Quantum Electron. 10, 777-787 (2005).
  61. K. F. Li, S. A. Plimmer, J. P. R. David, R. C. Tozer, G. J. Rees, P. N. Robson, C. C. Button, J. C. Clark, "Low avalanche noise characteristics in thin InP $\hbox{p}^{+}\hbox{-}\hbox{i} \hbox{-}\hbox{n}^{+}$ diodes with electron initiated multiplication," IEEE Photon. Technol. Lett. 11, 364-366 (1999).
  62. J. C. Campbell, S. Chandrasekhar, W. T. Tsang, G. J. Qua, B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes," J. Lightw. Technol. 7, 473-478 (1989).
  63. P. Yuan, C. C. Hansing, K. A. Anselm, C. V. Lenox, H. Nie, A. L. Holmes, Jr.B. G. Streetman, J. C. Campbell, "Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses," IEEE J. Quantum Electron. 36, 198-204 (2000).
  64. M. A. Saleh, M. M. Hayat, P. O. Sotirelis, A. L. Holmes, J. C. Campbell, B. Saleh, M. Teich, "Impact-ionization and noise characteristics of thin III–V avalanche photodiodes ," IEEE Trans. Electron Devices 48, 2722-2731 (2001).
  65. K. F. Li, D. S. Ong, J. P. R. David, R. C. Tozer, G. J. Rees, S. A. Plimmer, K. Y. Chang, J. S. Roberts, "Avalanche noise characteristics of thin GaAs structures with distributed carrier generation ," IEEE Trans. Electron Devices 47, 910-914 (2000).
  66. K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, R. Grey, "Avalanche multiplication noise characteristics in thin GaAs $\hbox{p}^{+} \hbox{-}\hbox{i}\hbox{-}\hbox{n}^{+}$ diodes," IEEE Trans. Electron Devices 45, 2102-2107 (1998).
  67. C. Hu, K. A. Anselm, B. G. Streetman, J. C. Campbell, "Noise characteristics of thin multiplication region GaAs avalanche photodiodes," Appl. Phys. Lett. 69, 3734-3736 (1996).
  68. S. A. Plimmer, J. P. R. David, D. C. Herbert, T.-W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, D. R. Wight, "Investigation of impact ionization in thin GaAs diodes," IEEE Trans. Electron Devices 43, 1066-1072 (1996).
  69. C. Lenox, P. Yuan, H. Nie, O. Baklenov, C. Hansing, J. C. Campbell, B. G. Streetman, "Thin multiplication region InAlAs homojunction avalanche photodiodes," Appl. Phys. Lett. 73, 783-784 (1998).
  70. C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, J. Newey, "Avalanche noise measurements in thin Si $\hbox{p}^{+}\hbox{-}\hbox{i}\hbox{-} \hbox{n}^{+}$ diodes," Appl. Phys. Lett. 76, 3926-3928 (2000).
  71. C. H. Tan, J. P. R. David, J. Clark, G. J. Rees, S. A. Plimmer, D. J. Robbins, D. C. Herbert, R. T. Carline, W. Y. Leong, "Avalanche multiplication and noise in submicron Si p-i-n diodes," Proc. SPIE, Silicon-Based Optoelectronics II (2000) pp. 95-102.
  72. S. A. Plimmer, J. P. R. David, G. J. Rees, R. Grey, D. C. Herbert, D. R. Wright, A. W. Higgs, "Impact ionization in thin $\hbox{Al}_{\rm x}\hbox{Ga}_{1 - {\rm x}}\hbox{As}$ $({\rm x} = 0.15 - 0.30)$ p-i-n diodes," J. Appl. Phys. 82, 1231-1235 (1997).
  73. B. K. Ng, J. P. R. David, G. J. Rees, R. C. Tozer, M. Hopkinson, R. J. Riley, "Avalanche multiplication and breakdown in $\hbox{Al}_{\rm x}\hbox{Ga}_{1 - {\rm x}}\hbox{As}\ ({\rm x} < 0.9)$," IEEE Trans. Electron Devices 49, 2349-2351 (2002).
  74. B. K. Ng, J. P. R. David, R. C. Tozer, M. Hopkinson, G. Hill, G. H. Rees, "Excess noise characteristics of $\hbox{Al}_{0.8}\hbox{Ga}_{0.2}\hbox{As}$ avalanche photodiodes," IEEE Trans. Electron Devices 48, 2198-2204 (2001).
  75. C. H. Tan, J. P. R. David, S. A. Plimmer, G. J. Rees, R. C. Tozer, R. Grey, "Low multiplication noise thin $\hbox{Al}_{0.6}\hbox{Ga}_{0.4}\hbox{As}$ avalanche photodiodes," IEEE Trans. Electron Devices 48, 1310-1317 (2001).
  76. B. K. Ng, J. P. R. David, R. C. Tozer, G. J. Rees, Y. Feng, J. H. Zhao, M. Weiner, "Nonlocal effects in thin 4H-SiC UV avalanche photodiodes," IEEE Trans. Electron Devices 50, 1724-1732 (2003).
  77. A. L. Beck, B. Yang, S. Wang, C. J. Collins, J. C. Campbell, A. Yulius, A. Chen, J. M. Woodall, "Quasi-direct UV/blue GaP avalanche photodiodes," IEEE J. Quantum Electron. 40, 1695-1699 (2004).
  78. C. H. Tan, R. Ghin, J. P. R. David, G. J. Rees, M. Hopkinson, "The effect of dead space on gain and excess noise in $\hbox{In}_{0.48} \hbox{Ga}_{0.52}{\rm P}\ \hbox{p}^{+}\hbox{in}^{+}$ diodes," Semicond. Sci. Technol. 18, 803-806 (2003).
  79. I. Watanabe, T. Torikai, K. Makita, K. Fukushima, T. Uji, "Impact ionization rates in (100) $\hbox{Al}_{0.48}\hbox{In}_{0.52}\hbox{As}$ ," IEEE Electron Device Lett. 11, 437-438 (1990).
  80. C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, Jr.B. G. Streetman, J. C. Campbell, "Resonant-cavity InGaAs/InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz ," IEEE Photon. Technol. Lett. 11, 1162-1164 (1999).
  81. N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, Jr.J. C. Campbell, "InGaAs/InAlAs avalanche photodiode with undepleted absorber," Appl. Phys. Lett. 82, 2175-2177 (2003).
  82. J. C. Boisvert, A. Masalykin, G. S. Kinsey, T. Isshiki, M. Haddad, R. Sudharsanan, X. Zheng, J. C. Campbell, "Characterization of InAlAs/InGaAs APD arrays for SWIR imaging applications," Proc. SPIE 5406, 13-20 (2004).
  83. I. Watanabe, M. Tsuji, K. Makita, K. Taguchi, "A new planar-structure InAlGaAs-InAlAs superlattice avalanche photodiode with a Ti-implanted guard-ring," IEEE Photon. Technol. Lett. 8, 827-829 (1996).
  84. I. Watanabe, T. Nakata, M. Tsuji, K. Makita, K. Taguchi, "High-reliability and low-dark-current 10-Gb/s planar superlattice avalanche photodiodes ," IEEE Photon. Technol. Lett. 9, 1619-1621 (1997).
  85. E. Yagyu, E. Ishimura, M. Nakaji, T. Aoyagi, Y. Tokuda, "Simple planar structure for high-performance AlInAs avalanche photodiodes," IEEE Photon. Technol. Lett. 18, 76-78 (2006).
  86. E. Yagyu, E. Ishimura, M. Nakaji, T. Aoyagi, K. Yoshiara, Y. Tokuda, "Investigation of guardring-free planar AlInAs avalanche photodiodes," IEEE Photon. Technol. Lett. 18, 1264-1266 (2006).
  87. V. M. Robbins, S. C. Smith, G. E. Stillman, "Impact ionization in $\hbox{Al}_{\rm x}\hbox{Ga}_{1 - {\rm x}}\hbox{As}$ for ${\rm x} = 0 - 0.4$," Appl. Phys. Lett. 52, 296-298 (1988).
  88. S. A. Plimmer, J. P. R. David, R. Grey, G. J. Rees, "Avalanche multiplication in $\hbox{Al}_{\rm x}\hbox{Ga}_{1 - {\rm x}}\hbox{As}\ ({\rm x} = 0 - 0.6)$," IEEE Trans. Electron Devices 47, 1089-1097 (2000).
  89. B. K. Ng, J. P. R. David, S. A. Plimmer, M. Hopkinson, R. C. Tozer, G. J. Rees, "Impact ionization coefficients of $\hbox{Al}_{0.8}\hbox{Ga}_{0.2}\hbox{As}$," Appl. Phys. Lett. 77, 4374-4376 (2000).
  90. X. G. Zheng, X. Sun, S. Wang, P. Yuan, G. S. Kinsey, A. L. Holmes, Jr.B. G. Streetman, J. C. Campbell, "Multiplication noise of $\hbox{Al}_{\rm x}\hbox{Ga}_{1 - {\rm x}}\hbox{As}$ avalanche photodiodes with high Al concentration and thin multiplication region," Appl. Phys. Lett. 78, 3833-3835 (2001).
  91. X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, J. C. Campbell, "Temperature dependence of the ionization coefficients of $\hbox{Al}_{\rm x} \hbox{Ga}_{1 - {\rm x}}\hbox{As}$," IEEE J. Quantum Electron. 36, 1168-1173 (2000).
  92. G. S. Kinsey, D. W. Gotthold, A. L. Holmes, Jr.J. C. Campbell, "GaNAs resonant-cavity avalanche photodiode operating at 1.064 μm," Appl. Phys. Lett. 77, 1543-1544 (2000).
  93. P. Yuan, S. Wang, X. Sun, X. G. Zheng, A. L. Holmes, Jr.J. C. Campbell, "Avalanche photodiodes with an impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 12, 1370-1372 (2000).
  94. O.-H. Kwon, M. M. Hayat, S. Wang, J. C. Campbell, A. L. Holmes, Jr.B. E. A. Saleh, M. C. Teich, "Optimal excess noise reduction in thin heterojunction $\hbox{Al}_{0.6} \hbox{Ga}_{0.4}\hbox{As}$-GaAs avalanche photodiodes," IEEE J. Quantum Electron. 39, 1287-1296 (2003).
  95. C. Groves, C. K. Chia, R. C. Tozer, J. P. R. David, G. J. Rees, "Avalanche noise characteristics of single $\hbox{Al}_{\rm x}\hbox{Ga}_{1 - {\rm x}}\hbox{As}(0.3 < \times < 0.6)$-GaAs heterojunction APDs," IEEE J. Quantum Electron. 41, 70-75 (2005).
  96. S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr.J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region ," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001).
  97. S. Wang, F. Ma, X. Li, R. Sidhu, X. G. Zheng, X. Sun, A. L. Holmes, Jr.J. C. Campbell, "Ultra-low noise avalanche photodiodes with a “centered-well” multiplication region ," IEEE J. Quantum Electron. 39, 375-378 (2003).
  98. M. M. Hayat, O.-H. Kwon, S. Wang, J. C. Campbell, B. E. A. Saleh, M. C. Teich, "Boundary effects on multiplication noise in thin heterostructure avalanche photodiodes: Theory and experiment," IEEE Trans. Electron Devices 49, 2114-2123 (2002).
  99. S. Wang, J. B. Hurst, F. Ma, R. Sidhu, X. Sun, X. G. Zheng, A. L. Holmes, Jr.J. C. Campbell, A. Huntington, L. A. Coldren, "Low-noise impact-ionization-engineered avalanche photodiodes grown on InP substrates ," IEEE Photon. Technol. Lett. 14, 1722-1724 (2002).
  100. N. Duan, S. Wang, F. Ma, N. Li, J. C. Campbell, C. Wang, L. A. Coldren, "High-speed and low-noise SACM avalanche photodiodes with an impact-ionization engineered multiplication region," IEEE Photon. Technol. Lett. 17, 1719-1721 (2005).
  101. F. Capasso, W. T. Tsang, A. L. Hutchinson, G. F. Williams, "Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio," Appl. Phys. Lett. 40, 38-40 (1982).
  102. R. Chin, N. Holonyak, Jr.G. E. Stillman, J. Y. Tang, K. Hess, "Impact ionization in multilayered heterojunction structures," Electron. Lett. 16, 467-469 (1980).
  103. M. M. Hayat, O.-H. Kwon, S. Wang, J. C. Campbell, B. E. A. Saleh, M. C. Teich, "Boundary effects on multiplication noise in thin heterostructure avalanche photodiodes ," IEEE Trans. Electron Devices 49, 2114-2123 (2002).
  104. K. Kato, S. Hata, K. Kawano, J.-I. Yoshida, A. Kozen, "A high-efficiency 50 GHz InGaAs multimode waveguide photodetector," IEEE J. Quantum Electron. 28, 2728-2735 (1992).
  105. F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, S. R. Forrest, "An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler ," IEEE Photon. Technol. Lett. 13, 845-847 (2001).
  106. A. Umbach, "High-speed integrated photodetectors for 40 Gb/s applications," Proc. SPIE 5246, 434-442 (2004).
  107. S. Demiguel, L. Giraudet, L. Joulaud, J. Decobert, F. Blache, V. Coupé, F. Jorge, P. Pagnod-Rossiaux, E. Boucherez, M. Achouche, F. Devaux, "Evanescently coupled photodiodes integrating a double stage taper for 40 Gb/s applications—Compared performance with side-illuminated photodiodes," J. Lightw. Technol. 20, 2004-2014 (2002).
  108. T. Takeuchi, T. Nakata, K. Makita, M. Yamaguchi, "High-speed, high-power and high-efficiency photodiodes with evanescently coupled graded-index waveguide," Electron. Lett. 36, 972-973 (2000).
  109. C. Cohen-Jonathan, L. Giraudet, A. Bonzo, J. P. Praseuth, "Waveguide AlInAs/GaAlInAs avalanche photodiode with a gain-bandwidth product over 160 GHz ," Electron. Lett. 33, 1492-1493 (1997).
  110. T. Nakata, G. Takeuchi, I. Watanabe, K. Makita, T. Torikai, "10 Gb/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure," Electron. Lett. 36, 2033-2034 (2000).
  111. T. Nakata, T. Takeuchi, K. Maliita, Y. Amamiya, T. Kalo, Y. Suzuki, T. Torikai, "High-sensitivity 40-Gb/s receiver with a wideband InAlAs waveguide avalanche photodiode ," Eur. Conf. Optical Commun. CopenhagenDenmark (2002) Paper 10.5.1.
  112. K. Shiba, T. Nakata, T. Takeuchi, Y. Watanabe, S. Wada, T. Torikai, "High sensitivity asymmetric waveguide APD with over-30 dBm at 10 Gb/s," Eur. Conf. Optical Commun. StockholmSweden (2004) Paper Mo4.4.3..
  113. G. S. Kinsey, J. C. Campbell, A. G. Dentai, "Waveguide avalanche photodiode operating at 1.55 μm with a gain-bandwidth product of 320 GHz," IEEE Photon. Technol. Lett. 13, 842-844 (2001).
  114. T. Torikai, T. Nakata, T. Kato, V. Makita, "40-Gbps waveguide avalanche photodiodes," Optical Fiber Commun. Conf. Tech. Dig. AnaheimCA (2005) Paper OFM3 (IEEE Cat. 05CH37672).
  115. J. Wei, F. Xia, S. R. Forrest, "A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode," IEEE Photon. Technol. Lett. 14, 1590-1592 (2002).
  116. S. Demiguel, X.-G. Zheng, N. Li, X. Li, J. C. Campbell, J. Decobert, N. Tscherptner, A. Anselm, "High-responsivity and high-speed evanescently-coupled avalanche photodiodes," Electron. Lett. 39, 1848-1849 (2003).
  117. W. P. Risk, D. S. Bethune, "Quantum cryptography," Opt. Photon. News 13, 26-32 (2002).
  118. S. Cova, M. Ghioni, A. Lotito, I. Rech, F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).
  119. K. K. Forsyth, J. C. Dries, "Variations in the photon-counting performance of InGaAs/InP avalanche photodiodes," Proc. IEEE LEOS Annu. Conf. (2003) pp. 777.
  120. K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleon, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
  121. A. Tosi, S. Cova, F. Zappa, M. A. Itzler, R. Ben-Michael, "InGaAs/InP single photon avalanche diode design and characterization," Proc. 36th Solid-State Device Res. Conf. (2006) pp. 335-338.
  122. M. Liu, X. Bai, C. Hu, X. Guo, J. C. Campbell, X. Zheng, Z. Pan, M. M. Toshima, "Low dark count rate and high single photon detection efficiency avalanche photodiode in Geiger-mode operation," 64th Device Research Conf. University ParkPA (2006) Paper II.A-4.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited