OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 25, Iss. 1 — Jan. 1, 2007
  • pp: 325–334

Interleaved Bidirectional Transmission of 16 × 10-Gb/s DWDM Signals Using DPSK Modulation Format and In-line Semiconductor Optical Amplifiers

Oladeji Akanbi, Jianjun Yu, and Gee-Kung Chang

Journal of Lightwave Technology, Vol. 25, Issue 1, pp. 325-334 (2007)

View Full Text Article

Acrobat PDF (792 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We have performed both experimental and numerical analyses of interleaved bidirectional transmission of 16 × 10-Gb/s dense-wavelength-division-multiplexed (DWDM) signals using differential-phase-shift-keying (DPSK) modulation format and in-line semiconductor optical amplifiers (SOAs). The constant intensity of DPSK-modulated DWDM signals enabled us to mitigate the crosstalk effects in the bidirectional SOA. We have demonstrated error-free bidirectional transmission of 16 channels over an 80-km single-mode fiber (SMF) with matching dispersion-compensating fiber and in-line amplification provided by an SOA. SOAs can be used for bidirectional transmission if the facet reflections can be controlled. In order to understand further the effect of the SOA facet reflectivity on transmission results, we developed a simulation model for our system. Based on the good agreement between our simulation and experimental results, we have found out that the system reflections can be minimized by careful optimization of the bias current and reflectivity of the SOA.

© 2007 IEEE

Oladeji Akanbi, Jianjun Yu, and Gee-Kung Chang, "Interleaved Bidirectional Transmission of 16 × 10-Gb/s DWDM Signals Using DPSK Modulation Format and In-line Semiconductor Optical Amplifiers," J. Lightwave Technol. 25, 325-334 (2007)

Sort:  Year  |  Journal  |  Reset


  1. K. Akimoto, J. Kani, M. Teshima, K. Iwatsuki, "Super-dense WDM transmission of spectrum-sliced incoherent light for wide-area access network ," J. Lightw. Technol. 21, 2715-2722 (2003).
  2. J. Yu, P. Jeppesen, "Bi-directional WDM transmission by use of SOAs as in-line amplifiers without isolators ," Proc. OFC (2001) pp. WDD-58.
  3. J. Yu, A. Buxens, A. Clausen, P. Jeppesen, "16 × 10-Gb/s WDM bi-directional gating in a semiconductor optical amplifier for optical cross connects exploiting network connection symmetry," IEEE Photon. Technol. Lett. 12, 702-704 (2002).
  4. O. Akanbi, J. Yu, G. K. Chang, "Bi-directional transmission of DPSK modulated DWDM channels using semiconductor optical amplifiers ," Conf. Lasers and Electro-Optics (CLEO) TokyoJapan (2005) Paper CTuO5.
  5. O. Akanbi, J. Yu, G. K. Chang, "A new scheme for bi-directional WDM-PON using upstream and downstream channels generated by optical carrier suppression and separation technique," IEEE Photon. Technol. Lett. 18, 340-342 (2006).
  6. M. Settembre, F. Matera, "Cascaded optical communication systems with in-line semiconductor optical amplifiers ," J. Lightw. Technol. 15, 962-967 (1997).
  7. Y. Sun, "32 × 2.5-Gb/s DWDM channels over 125 km using cascaded in-line semiconductor optical amplifiers," Electron. Lett. 35, 1863-1865 (1999).
  8. M. Yoshino, K. Inoue, "Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection," IEEE Photon. Technol. Lett. 8, 58-60 (1996).
  9. Z. Li, "1050-km WDM transmission of 8 × 10.709 Gb/s DPSK signal using cascaded in-line semiconductor optical amplifier," IEEE Photon. Technol. Lett. 16, 1760-1762 (2004).
  10. P. Cho, "Investigation of SOA nonlinearities on the amplification of high spectral efficiency signals ," Conf. Optical Fiber Commun. (OFC) Los AngelesCA (2004) Paper MF70.
  11. T. Durhuus, B. Mikkelsen, C. Joergensen, K. Stubkjaer, "All optical wavelength conversion by semiconductor optical amplifiers," J. Lightw. Technol. 14, 942-954 (1996).
  12. S. Bischoff, A. Buxens, H. Poulsen, A. Clausen, J. Mark, "Bi-directional four wave mixing in semiconductor optical amplifiers: Theory and experiment ," J. Lightw. Technol. 17, 1617-1625 (1999).
  13. L. H. Spiekman, A. Gnauck, J. Wiesenfeld, L. Garrett, "DWDM transmission of 32 10-Gb/s channels through 160 km link using semiconductor optical amplifiers," Electron. Lett. 36, 1046-1047 (2000).
  14. L. H. Spiekman, A. Gnauck, J. Wiesenfeld, G. van den Hoven, L. Garrett, "Transmission of 8 DWDM channels at 20-Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 12, 717-719 (2000).
  15. W. Choi, S. Hur, J. Lee, Y. Kim, J. Jeong, "Transmission performance analysis of 8 × 10 Gb/s WDM signals using cascaded SOAs due to signal wavelength displacement," J. Lightw. Technol. 20, 1350-1356 (2002).
  16. L. Gillner, E. Goobar, L. Thylen, M. Gustavsson, "Semiconductor laser amplifier optimization," IEEE J. Quantum Electron. 25, 1822-1827 (1989).
  17. S. Radic, S. Chandrasekhal, "Limitations in dense bi-directional transmission in absence of optical amplification ," IEEE Photon. Technol. Lett. 14, 95-97 (2002).
  18. M. Sumida, T. Kubo, T. Imai, "Limitations imposed by Rayleigh backscattering in closely interleaved, bi-directional WDM transmission systems," IEEE Photon. Technol. Lett. 15, 150-152 (2003).
  19. G. P. Agrawal, N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers ," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
  20. M. J. Adams, H. J. Westlake, M. J. O'Mahony, I. D. Henning, "A comparison of active and passive optical bistability in semiconductors," IEEE J. Quantum Electron. QE-21, 1498-1501 (1985).
  21. M. J. O'Mahony, "Semiconductor laser amplifiers for use in future fiber systems," J. Lightw. Technol. 6, 531-544 (1988).
  22. J. Wang, H. Olesen, K. Stubkjaer, "Recombination, gain and bandwidth characteristics of 1.3-μm semiconductor laser amplifiers," J. Lightw. Technol. LT-5, 184-189 (1987).
  23. T. Saitoh, T. Mukai, "1.5 μm GaInAsP traveling wave semiconductor laser amplifier," IEEE J. Quantum Electron. QE-23, 1010-1020 (1987).
  24. N. A. Olsson, "Semiconductor optical amplifiers," Proc. IEEE 80, 375-382 (1987).
  25. G. Giulani, D'Alessandro, "Noise analysis of conventional and gain-clamped semiconductor optical amplifiers," J. Lightw. Technol. 18, 1256-1263 (2000).
  26. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997).
  27. H. Kim, "Cross phase modulation induced nonlinear phase noise in WDM direct detection DPSK systems ," J. Lightw. Technol. 21, 1770-1774 (2003).
  28. X. Wei, L. Zhang, "Analysis of the phase noise in saturated SOAs for DPSK applications," IEEE J. Quantum Electron. 41, 554-561 (2005).
  29. K. Kikuchi, T. P. Lee, "Design theory of electrically frequency controlled narrow linewidth semiconductor lasers for coherent optical communication systems," J. Lightw. Technol. LT-5, 1273-1276 (1987).
  30. J. Pleumeekers, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
  31. S. Liaw, K.-P. Ho, C. Lin, S. Chi, "Multichannel bi-directional transmission using a WDM MUX/DMUX pair and uni-directional in-line amplifiers," IEEE Photon. Technol. Lett. 9, 1664-1666 (1997).
  32. N. Storkfelt, "Measurement of carrier lifetime and linewidth enhancement factor for 1.5-um ridge waveguide laser amplifier," IEEE Photon. Technol. Lett. 3, 632-634 (1991).
  33. R. Gutierrez-Castrejon, L. Schares, L. Occhi, G. Guekos, "Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length," IEEE J. Quantum Electron. 36, 1476-1484 (2000).
  34. A. H. Gnauck, P. J. Winzer, "Optical phase shift keyed transmission," J. Lightw. Technol. 23, 115-130 (2005).
  35. M. Deventer, "Power penalties due to reflection and Rayleigh backscattering in a single frequency bi-directional coherent system," IEEE Photon. Technol. Lett. 5, 851-854 (1993).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited