OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 1 — Jan. 1, 2007
  • pp: 335–345

High-Bandwidth PVDF-Clad GI POF With Ultra-Low Bending Loss

Takaaki Ishigure, Yuta Aruga, and Yasuhiro Koike

Journal of Lightwave Technology, Vol. 25, Issue 1, pp. 335-345 (2007)


View Full Text Article

Acrobat PDF (1100 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose a poly vinylidene fluoride (PVDF)-clad graded index plastic optical fiber (GI POF) which exhibits excellent mechanical strength and low bending loss property. A main concern of PVDF-clad GI POFs is the bandwidth degradation due to its specific waveguide structure compared to the conventional poly-methyl-methacrylate (PMMA)-based GI POF. We design the index profile of PVDF-clad GI POFs to maintain high bandwidth under a restricted mode launch condition. However, when mode coupling exists in PVDF-clad GI POFs, the bandwidth can be degraded. Hence, for high bandwidth performance, we investigate a way to reduce the mode coupling in PVDF-clad GI POFs. We find that the fiber numerical aperture (NA) is a key factor in controlling the mode coupling. By adjusting the NA of the GI core region to be as high as 0.17, bandwidth higher than 2 GHz for 100 m distance is achieved by the PVDF-clad GI POF. In addition, the propagating mode properties of the optimized PVDF-clad GI POF are investigated, particularly when the fiber is statically bent, because such a fiber bending can enhance mode coupling. We find that the high bandwidth performance is maintained in the PVDF-clad GI POF, even under severe bending conditions if the GI core region has an NA of 0.17.

© 2007 IEEE

Citation
Takaaki Ishigure, Yuta Aruga, and Yasuhiro Koike, "High-Bandwidth PVDF-Clad GI POF With Ultra-Low Bending Loss," J. Lightwave Technol. 25, 335-345 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-1-335

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited