OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 1 — Jan. 1, 2007
  • pp: 410–420

A Mueller-Matrix Formalism for Modeling Polarization Azimuth and Ellipticity Angle in Semiconductor Optical Amplifiers in a Pump–Probe Scheme

L. Q. Guo and Michael J. Connelly

Journal of Lightwave Technology, Vol. 25, Issue 1, pp. 410-420 (2007)


View Full Text Article

Acrobat PDF (439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper presents a Mueller-matrix approach to simulate the azimuth and ellipticity trajectory of a probe light in a tensile-strained bulk semiconductor optical amplifier (SOA) in a conventional pump–probe scheme. The physical mechanisms for the variations of polarization azimuth and ellipticity angle of the probe originate from the significant nonuniform distributions of carrier density across the active region in the presence of an intense pump light. Due to this carrier-density nonuniformity, the effective refractive indexes experienced by transverse-electric (TE) and transverse-magnetic (TM) modes of the probe are different. This results in a phase shift between TE and TM modes of the probe upon leaving the SOA. Simulations of the carrier distributions along the cavity length at different pump-light levels are demonstrated using multisection rate equations, which take into account the longitudinal nonuniform carrier density. The optical gain is considered via the parabolic band approximation. The influences of the spontaneous recombination and carrier-dependent material loss on the amplifier performance are included. The Mueller-matrix formalism is utilized to predict the variations of azimuth and ellipticity angle, which greatly reduces the complexity of the simulations in comparison with Jones-matrix formalism. The suggested approach is beneficial to experimental investigations due to the fact that during the optical-tuning process, Stokes parameters are virtually measurable on the Poincaré sphere, and the Stokes vector of the incoming probe can be adjusted by a polarization controller and monitored by a polarization analyzer. Based on these carrier-induced nonlinearities in SOAs, an optical and gate with extinction ratio larger than 14 dB and Q-factor larger than 25 is presented at a bit rate of 2.5 Gb/s.

© 2007 IEEE

Citation
L. Q. Guo and Michael J. Connelly, "A Mueller-Matrix Formalism for Modeling Polarization Azimuth and Ellipticity Angle in Semiconductor Optical Amplifiers in a Pump–Probe Scheme," J. Lightwave Technol. 25, 410-420 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-1-410


Sort:  Year  |  Journal  |  Reset

References

  1. M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).
  2. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, D. C. Rogers, "Nonlinear optics for high-speed digital information processing," Science 286, 1523-1528 (1999).
  3. J. Mork, A. Mecozzi, G. Eisenstein, "The modulation response of a semiconductor laser amplifier," IEEE J. Sel. Topics Quantum Electron. 5, 851-860 (1999).
  4. M. F. C. Stephens, M. Asghari, R. V. Penty, I. H. White, "Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 449-451 (1997).
  5. L. G. Guo, M. J. Connelly, "Signal-induced birefringence and dichroism in a tensile-strained bulk semiconductor optical amplifier and its application to wavelength conversion," J. Lightw. Technol. 23, 4037-4045 (2005).
  6. H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, G.-D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: Theory and application to all-optical flip-flop memories," IEEE J. Quantum Electron. 39, 141-148 (2003).
  7. J. P. Turkiewicz, G. D. Khoe, H. de Waardt, "All-optical 1310 to 1550 nm wavelength conversion by utilizing nonlinear polarization rotation in semiconductor optical amplifier," Electron. Lett. 41, 29-30 (2005).
  8. H. Soto, J. D. Topomondzob, D. Erasmeb, M. Castro, "All-optical nor gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier," Opt. Commun. 218, 243-247 (2003).
  9. E. Alvarez, H. Soto, J. Torres, "Investigation of the carrier density dependence on the confinement factor in a bulk semiconductor optical amplifier with a ridge waveguide," Opt. Commun. 222, 161-167 (2003).
  10. M. Zhao, J. D. Merlier, G. Morthier, R. Baets, "Dynamic birefringence of the linear optical amplifier and application in optical regeneration ," IEEE J. Sel. Topics Quantum Electron. 8, 1399-1404 (2002).
  11. H. Soto, D. Erasme, G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 11, 970-972 (1999).
  12. N. Pfeffer, F. Charra, J. M. Nunzi, "Phase and frequency resolution of picosecond optical Kerr nonlinearities," Opt. Lett. 16, 1987-1989 (1991).
  13. L. Q. Guo, Broad-band antireflection coatings for improved grating-external-cavity diode laser performance Ph.D. dissertation Dept. Eng. Physics, McMaster Univ.HamiltonONCanada (2002).
  14. J. Wang, H. Olesen, K. E. Stubkjaer, "Recombination, gain and bandwidth characteristics of 1.3-μm semiconductor laser amplifiers," J. Lightw. Technol. LT-5, 184-189 (1987).
  15. G. P. Agrawal, N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, 1993).
  16. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
  17. M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, S. Arai, "The temperature dependence of the threshold current of GaInAsP/InP DH lasers," IEEE J. Quantum Electron. QE-17, 611-619 (1981).
  18. H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diodes (Artech House, 1994).
  19. R. Olshansky, C. B. Su, J. Manning, W. Powazinik, "Measurement of radiative and nonradiative recombination rates in InGaAsP and AIGaAs light sources ," IEEE J. Quantum Electron. QE-20, 838-854 (1984).
  20. M. Kot, K. Zdansky, "Measurement of radiative and nonradiative recombination rate in InGaAsP-InP LED's," IEEE J. Quantum Electron. 28, 1746-1750 (1992).
  21. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  22. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  23. E. Wintner, E. P. Ippen, "Nonlinear carrier dynamics in GaInAsP compounds," Appl. Phys. Lett. 44, 999-1001 (1984).
  24. D. T. Cassidy, "Spontaneous-emission factor of semiconductor diode lasers," J. Opt. Soc. Amer. B, Opt. Phys. 8, 747-752 (1991).
  25. K. L. Hall, E. R. Thoen, E. P. Ippen, Semiconductors and Semimetals (Academic, 1999) pp. 83.
  26. L. Q. Guo, M. J. Connelly, "Demonstration of birefringence in a bulk semiconductor optical amplifier and its application to all-optical wavelength conversion," Proc. Symp. Opt. Fiber Meas. (2004) pp. 167-170.
  27. D. Goldstein, Polarized Light (Marcel Dekker, 2003).
  28. G. Talli, M. J. Adams, "Amplified spontaneous emission in semiconductor optical amplifiers: Modeling and experiments ," Opt. Commun. 218, 161-166 (2003).
  29. T. Durhuus, B. Mikkelsen, K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion," J. Lightw. Technol. 10, 1056-1065 (1992).
  30. H. Soto, D. Erasme, "Modeling and experimental measurements of the switching behavior of semiconductor optical amplifiers," Opt. Quantum Electron. 28, 669-682 (1996).
  31. L. Q. Guo, M. J. Connelly, "All-optical and gate using nonlinear polarization rotation in a bulk semiconductor optical amplifier," Proc. Tech. Dig.: Opt. Amplif. and Their Appl. (2005) pp. 1-3.
  32. S. Y. Lu, R. A. Chipman, "Mueller matrices and the degree of polarization," Opt. Commun. 146, 11-14 (1998).
  33. J. M. Wiesenfeld, A. H. Gnauck, G. Raybon, U. Koren, "High-speed multiple-quantum-well optical power amplifier," IEEE Photon. Technol. Lett. 4, 708-711 (1992).
  34. J. Jacquet, P. Brosson, A. Olivier, A. Perales, A. Bodere, D. Leclerc, "Carrier-induced differential refractive index in GaInAsP-GaInAs separate confinement multiquantum well lasers," IEEE Photon. Technol. Lett. 2, 620-622 (1990).
  35. M. J. Hamp, Asymmetry multiple quantum well lasers Ph.D. dissertation Dept. Eng. Physics, McMaster Univ.HamiltonONCanada (2000).
  36. R. W. H. Engelmann, C.-L. Shieh, C. Shu, Quantum Well Lasers (Academic, 1993).
  37. L. M. Walpita, "Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix," J. Opt. Soc. Amer. A, Opt. Image Sci. 2, 595-602 (1985).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited