OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 25, Iss. 1 — Jan. 1, 2007
  • pp: 432–439

Modeling and Analysis of a Multilayer Dielectric Slab Waveguide With Applications in Edge-Coupled Terahertz Photomixer Sources

Daryoosh Saeedkia and Safieddin Safavi-Naeini

Journal of Lightwave Technology, Vol. 25, Issue 1, pp. 432-439 (2007)

View Full Text Article

Acrobat PDF (306 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The waveguiding properties of a multilayer dielectric slab waveguide structure with applications in edge-coupled terahertz photomixer sources are studied. The structure guides two interfering laser beams, which their central frequency difference falls into the terahertz spectrum. The top layer of the dielectric waveguide structure is made of an ultrafast photoabsorbing material, wherein the power of the guided modes are being absorbed and converted into a terahertz signal. The optical field and power distributions inside the waveguide structure are studied for different physical parameters of the dielectric layers. The absorbed optical intensity and the generated terahertz photocurrent and terahertz power inside the photoabsorbing layer are calculated.

© 2007 IEEE

Daryoosh Saeedkia and Safieddin Safavi-Naeini, "Modeling and Analysis of a Multilayer Dielectric Slab Waveguide With Applications in Edge-Coupled Terahertz Photomixer Sources," J. Lightwave Technol. 25, 432-439 (2007)

Sort:  Year  |  Journal  |  Reset


  1. D. L. Woolard, E. R. Brown, M. Pepper, M. Kemp, "Terahertz frequency sensing and imaging: A time of reckoning future applications?," Proc. IEEE 93, 1722-1743 (2005).
  2. Terahertz Optoelectronics (Springer-Verlag, 2005).
  3. M. Nagel, P. H. Bolivar, H. Kurz, "Modular parallel-plate THz components for cost-efficient biosensing systems," Semicond. Sci. Technol. 20, S281-S285 (2005).
  4. P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Trans. Microw. Theory Tech. 52, 2438-2447 (2004).
  5. T. Globus, D. Woolard, M. Bykhovskaia, B. Gelmont, L. Werbos, A. Samuels, "THz-frequency spectroscopic sensing of DNA and related biological materials," Int. J. High Speed Electron. Syst. 13, 903-936 (2003).
  6. S. Wang, B. Ferguson, D. Abbott, X.-C. Zhang, "T-ray imaging and tomography," J. Biol. Phys. 29, 247-256 (2003).
  7. Sensing with Terahertz Radiation (Springer-Verlag, 2003).
  8. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, W. R. Tribe, "Security applications of terahertz technology," Proc. SPIE Conf. (2003) pp. 44-52.
  9. P. F. Taday, "Applications of terahertz spectroscopy to pharmaceutical sciences," Philos. Trans. Roy. Soc. London A, Math. Phys. Sci. 362, 351-364 (2004).
  10. A. Hirata, H. Ishii, T. Nagatsuma, "Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters," Proc. Int. Top. Meeting Microw./Photon. (2000) pp. 229-232.
  11. M. C. Teich, "Field-theoretical treatment of photomixing," Appl. Phys. Lett. 14, 201-203 (1969).
  12. E. R. Brown, F. W. Smith, K. A. McIntosh, "Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors," J. Appl. Phys. 73, 1480-1484 (1993).
  13. E. R. Brown, "THz generation by photomixing in ultrafast photoconductors," Int. J. High Speed Electron. Syst. 13, 497-545 (2003).
  14. D. Saeedkia, R. R. Mansour, S. Safavi-Naeini, "The interaction of laser and photoconductor in a continuous-wave terahertz photomixer ," IEEE J. Quantum Electron. 41, 1188-1196 (2005).
  15. C. J. Stevens, D. J. Edwards, "Photomixing receiver using kinetic inductive effect in high $T_{c}$ superconductors," Electron. Lett. 37, 1420-1421 (2001).
  16. D. Saeedkia, R. R. Mansour, S. Safavi-Naeini, "Modeling and analysis of high-temperature superconductor terahertz photomixers," IEEE Trans. Appl. Supercond. 15, 3847-3855 (2005).
  17. E. A. Michael, "Travelling-wave photonic mixers for increased continuous-wave power beyond 1 THz," Semicond. Sci. Technol. 20, S164-S177 (2005).
  18. J.-W. Shi, K.-G. Gan, Y.-J. Chiu, Y.-H. Chen, C.-K. Sun, Y.-J. Yang, J. E. Bowers, "Metal-semiconductor-metal traveling-wave photodetectors," IEEE Photon. Technol. Lett. 16, 623-625 (2001).
  19. A. Stohr, R. Heinzelmann, A. Malcoci, D. S. Jager, "Optical heterodyne millimeter-wave generation using 1.55-μm traveling-wave photodetectors," IEEE Trans. Microw. Theory Tech. 49, 1926-1933 (2001).
  20. L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, A. Y. Cho, "High-power high-speed photodetectors-design, analysis, and experimental demonstration ," IEEE Trans. Microw. Theory Tech. 45, 1320-1331 (1997).
  21. E. H. Bottcher, D. Bimberg, "Millimeter wave distributed metal-semiconductor-metal photodetectors," Appl. Phys. Lett. 66, 3648-3650 (1995).
  22. Low Temperature (LT) GaAs and Related Materials (Mater. Res. Soc., 1992).
  23. E. R. Brown, D. C. Driscoll, A. C. Gossard, "State-of-the-art in 1.55-μm ultrafast InGaAs photoconductors, and the use of signal-processing techniques to extract the photocarrier lifetime," Semicond. Sci. Technol. 20, S199-S204 (2005).
  24. M. Sukhotin, E. R. Brown, A. C. Gossard, D. C. Driscoll, M. Hanson, P. Maker, R. Muller, "Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55 μm ," Appl. Phys. Lett. 82, 3116-3118 (2003).
  25. A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, D. S. Jager, "Ultra-wide-band traveling-wave photodetectors for photonic local oscillators," J. Lightw. Technol. 21, 3062-3070 (2003).
  26. Y. Kokubo, I. Ohta, "Refractive index as a function of photon energy for AlGaAs between 1.2 and 1.8 eV," J. Appl. Phys. 81, 2042-2043 (1997).
  27. Guided-Wave Optoelectronics (Springer-Verlag, 1988).
  28. GaInAsP Alloy Semiconductors (Wiley, 1982).
  29. R. E. Nahory, M. A. Pollack, W. D. Johnston, Jr.R. L. Barns, "Band gap versus composition and demonstration of Vegard's law for $\hbox{In}_{1 - x}\hbox{Ga}_{x}\hbox{As}_{y}\hbox{P}_{1 - y}$ lattice matched to InP," Appl. Phys. Lett. 33, 659-661 (1978).
  30. H. Yajima, "Coupled mode analysis of dielectric planar branching waveguides," IEEE J. Quantum Electron. QE-14, 749-755 (1978).
  31. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
  32. D. Saeedkia, S. Safavi-Naeini, "A comprehensive model for photomixing in ultrafast photoconductors," IEEE Photon. Technol. Lett. 18, 1457-1459 (2006).
  33. N. Zamdmer, Q. Hu, K. A. McIntosh, S. Verghese, "Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias," Appl. Phys. Lett. 75, 2313-2315 (1999).
  34. H. W. Thim, "Computer study of bulk GaAs devices with random one-dimensional doping fluctuations ," J. Appl. Phys. 39, 3897-3904 (1968).
  35. M. Sukhotin, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, "Picosecond photocarrier-lifetime in ErAs:InGaAs at 1.55 μm," Appl. Phys. Lett. 83, 3921-3923 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited