OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 25, Iss. 1 — Jan. 1, 2007
  • pp: 46–57

Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications

Steven J. Koester, Clint L. Schow, Laurent Schares, Gabriel Dehlinger, Jeremy D. Schaub, Fuad E. Doany, and Richard A. John

Journal of Lightwave Technology, Vol. 25, Issue 1, pp. 46-57 (2007)

View Full Text Article

Acrobat PDF (584 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, an overview and assessment of high-performance receivers based upon Ge-on-silicon-on-insulator (Ge-on-SOI) photodiodes and Si CMOS amplifier ICs is provided. Receivers utilizing Ge-on-SOI lateral p-i-n photodiodes paired with high-gain CMOS amplifiers are shown to operate at 15 Gb/s with a sensitivity of -7.4 dBm (BER=10-12) while utilizing a single supply voltage of only 2.4 V. The 5-Gb/s sensitivity of similar receivers is constant up to 93 °C, and 10-Gb/s operation is demonstrated at 85 °C. Error-free (BER<10-12) operation of receivers combining a Ge-on-SOI photodiode with a single-ended high-speed receiver front end is demonstrated at 19 Gb/s, using a supply voltage of 1.8 V. In addition, receivers utilizing Ge-on-SOI photodiodes integrated with a low-power CMOS IC are shown to operate at 10 Gb/s using a single 1.1-V supply while consuming only 11 mW of power. A perspective on the future technological capabilities and applications of Ge-detector/Si-CMOS receivers is also provided.

© 2007 IEEE

Steven J. Koester, Clint L. Schow, Laurent Schares, Gabriel Dehlinger, Jeremy D. Schaub, Fuad E. Doany, and Richard A. John, "Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications," J. Lightwave Technol. 25, 46-57 (2007)

Sort:  Year  |  Journal  |  Reset


  1. R. A. Soref, "Silicon-based optoelectronics," Proc. IEEE 81, 1687-1706 (1993).
  2. B. Davari, R. H. Dennard, G. G. Shahidi, "CMOS scaling for high-performance and low-power—The next 10 years," Proc. IEEE 83, 595-606 (1995).
  3. S. J. Lee, L. Wagner, B. Jagannathan, S. Csutak, J. Pekarik, N. Zamdmer, M. Breitwisch, R. Ramachandran, G. Freeman, "Record RF performance of sub-46 nm ${\rm L}_{\rm gate}$ NFETs in microprocessor SOI CMOS technologies," Proc. IEDM (2005) pp. 251-254.
  4. D. L. Harame, "The revolution in SiGe: Impact on device electronics," Appl. Surf. Sci. 224, 9-17 (2004).
  5. J. Humlicek, F. Lukes, E. Schmidt, Handbook of Optical Constants of Solids II (Academic, 1991) pp. 607-636.
  6. R. F. Potter, Handbook of Optical Constants of Solids (Academic, 1985) pp. 465-478.
  7. B. Mukherjee, "WDM optical communication networks: Progress and challenges," IEEE J. Sel. Areas Commun. 18, 1810-1824 (2000).
  8. J. Kash, "Bringing optics inside the box: Recent progress and future trends," Proc. 16th Annu. Meeting IEEE Lasers and Electro-Opt. Soc. (2003) pp. 148-149.
  9. D. V. Plant, A. G. Kirk, "Optical interconnects at the chip and board level: Challenges and solutions," Proc. IEEE 88, 808-818 (2000).
  10. L. Colace, G. Masini, G. Assanto, "Ge-on-Si approaches to the detection of near-infrared light," IEEE J. Quantum Electron. 35, 1843-1852 (1999).
  11. S. J. Koester, J. D. Schaub, G. Dehlinger, J. O. Chu, "Ge-on-SOI infrared detectors for integrated photonic applications," IEEE J. Sel. Topics Quantum Electron. 12, 1489-1502 (2006).
  12. S. Luryi, A. Kastalsky, J. C. Bean, "New infrared detector on a silicon chip," IEEE Trans. Electron. Devices ED-31, 1135-1139 (1984).
  13. H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, S. Luryi, "$\hbox{Ge}_{\rm x}\hbox{Si}_{1 - {\rm x}}$ strained-layer superlattice waveguide photodetectors operating near 1.3 μm," Appl. Phys. Lett. 48, 963-965 (1986).
  14. L. Naval, B. Jalali, L. Gomelsky, J. M. Liu, "Optimization of $\hbox{Si}_{1 - {\rm x}}\hbox{Ge}_{\rm x}/\hbox{Si}$ waveguide photodetectors operating at $\lambda = 1.3\ \mu\hbox{m}$," J. Lightw. Technol. 14, 787-797 (1996).
  15. S. B. Samavedam, M. T. Currie, T. A. Langdo, E. A. Fitzgerald, "High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed buffers," Appl. Phys. Lett. 73, 2125-2127 (1998).
  16. Z. Huang, J. Oh, J. C. Campbell, "Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers," Appl. Phys. Lett. 85, 3286-3288 (2004).
  17. M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, E. Kasper, "Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth," IEEE Photon. Technol. Lett. 17, 1510-1512 (2005).
  18. J. Liu, "High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform," Appl. Phys. Lett. 87, 103 501-1-103 501-3 (2005).
  19. G. Dehlinger, J. D. Schaub, J. O. Chu, S. J. Koester, Q. C. Ouyang, A. Grill, "High speed lateral PIN germanium-on-silicon photodetectors," 1st Int. SiGe Technology and Device Meeting NagoyaJapan (2003).
  20. G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, A. Grill, "High-speed germanium-on-SOI lateral PIN photodiodes," IEEE Photon. Technol. Lett. 16, 2547-2549 (2004).
  21. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, "High-quality Ge epilayers on Si with low threading-dislocation densities," Appl. Phys. Lett. 75, 2909-2911 (1999).
  22. C. Kromer, G. Sialm, T. Morf, M. L. Schmatz, F. Ellinger, D. Erni, H. Jäckel, "A low-power 20-GHz 52-dB$\Omega$ transimpedance amplifier in 80-nm CMOS," IEEE J. Solid-State Circuits 39, 885-894 (2004).
  23. R.-C. Liu, H. Wang, "DC-to-15- and DC-to-30-GHz CMOS distributed transimpedance amplifiers," Proc. IEEE Radio Freq. Integr. Circuits Symp. (2004) pp. 535-538.
  24. W.-Z. Chen, Y.-L. Cheng, D.-S. Lin, "A 1.8-V 10-Gb/s fully integrated CMOS optical receiver analog front-end," IEEE J. Solid-State Circuits 40, 1388-1396 (2005).
  25. D. Guckenberger, "1 V, 10 mW, 10 Gb/s CMOS optical receiver front-end," Proc. IEEE Radio Freq. Integr. Circuits Symp. (2005) pp. 309-312.
  26. S. M. Csutak, J. D. Schaub, W. E. Wu, R. Shimer, J. C. Campbell, "High-speed monolithically integrated silicon photoreceivers fabricated in 130-nm CMOS technology ," J. Lightw. Technol. 20, 1724-1729 (2002).
  27. B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, J. C. Campbell, "10-Gb/s all-silicon optical receiver," IEEE Photon. Technol. Lett. 15, 745-747 (2003).
  28. M. Jutzi, M. Grözing, E. Gaugler, W. Mazioschek, M. Berroth, "2-Gb/s CMOS optical integrated receiver with a spatially modulated photodetector," IEEE Photon. Technol. Lett. 17, 1268-1270 (2005).
  29. S. Radovanovic, A. J. Annema, B. Nauta, "A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication," IEEE J. Solid-State Circuits 40, 1706-1717 (2005).
  30. R. Swoboda, H. Zimmermann, "11 Gb/s monolithically integrated silicon optical receiver for 850 nm wavelength," Proc. IEEE Int. Solid-State Circuits Conf. (2006) pp. 904-911.
  31. C. L. Schow, L. Schares, S. J. Koester, G. Dehlinger, R. John, F. E. Doany, "A 15-Gb/s, 2.4 V optical receiver using a Ge-on-SOI photodiode and a CMOS IC," IEEE Photon. Technol. Lett. 18, 1981-1983 (2006).
  32. S. J. Koester, L. Schares, C. L. Schow, G. Dehlinger, R. A. John, "Temperature-dependent analysis of Ge-on-SOI photodetectors and receivers," Proc. 3rd Int. Conf. Group-IV Photon. (2006) pp. 179-181.
  33. C. L. Schow, L. Schares, R. A. John, L. S. Fischer, D. Guckenberger, "A 25-Gb/s transimpedance amplifier in 0.13 $\mu \hbox{m}$ CMOS," Electron. Lett. 42, 1240-1241 (2006).
  34. 10-Gb/s Ethernet standard (ANSI/IEEE P802.3-2002) http://www.ieee802.org/3/ae/ http://standards.ieee.org/getieee802/802.3.html.
  35. 10-Gb/s Infiniband standard http://www.infinibandta.org.
  36. Fibre Channel standards http://www.fibrechannel.org http://www.t11.org.
  37. O. Liboiron-Ladouceur, C. L. Schow, P. K. Pepeljugoski, F. E. Doany, R. A. John, J. A. Kash, "A 17-Gb/s, 200-m multimode optical fiber link using CMOS analog ICs and silicon carrier packaging ," Proc. 19th Annu. Meeting IEEE Lasers and Electro-Opt. Soc. (2006) pp. 573-574.
  38. L. Schares, "Terabus: Terabit/second-class card-level optical interconnect technologies," IEEE J. Sel. Topics Quantum Electron. 12, 1032-1044 (2006).
  39. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, 728-749 (2000).
  40. J.-O. Plouchart, J. Kim, J. Gross, R. Trzcinski, K. Wu, "Scalability of SOI CMOS technology and circuit to millimeter wave performance," Proc. Compound Semicond. Integr. Circuit Symp. (2005) pp. 121-124.
  41. M. Rouvière, "Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55 $\mu \hbox{m}$ operation," Appl. Phys. Lett. 87, 231 109-1-231 109-3 (2005).
  42. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, K. Cadien, "On-chip optical interconnects," Intel Technol. J. 8, 129-142 (2004).
  43. G. Masini, V. Cencelli, L. Colace, F. de Notaristefani, G. Assanto, "Linear array of Si-Ge heterojunction photodetectors monolithically integrated with silicon CMOS readout electronics," IEEE Sel. Topics Quantum Electron. 10, 811-815 (2004).
  44. S. Balakumar, M. M. Roy, B. Ramamurthy, C. H. Tung, G. Fei, S. Tripathy, C. Dongzhi, R. Kumar, N. Balasubramanian, D. L. Kwong, "Fabrication aspects of germanium on insulator from sputtered Ge on Si-substrates," Electrochem. Solid-State Lett. 9, G158-G160 (2006).
  45. Z. Lv, H. Zhang, J. Wang, L. Tian, Z. Li, J. Sun, J. Chen, X. Wang, "Fabrication of self-aligned drain and source on insulator MOSFET with dielectric pocket by local SIMOX technology," Proc. IEEE Int. SOI Conf. (2005) pp. 99-100.
  46. N. A. Bojarczuk, M. Copel, S. Guha, V. Narayanan, E. J. Preisler, F. M. Ross, H. Shang, "Epitaxial silicon and germanium on buried insulator heterostructures and devices," Appl. Phys. Lett. 83, 5443-5445 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited