Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 25,
  • Issue 10,
  • pp. 3175-3184
  • (2007)

A Novel Nonparaxial Time-Domain Beam-Propagation Method for Modeling Ultrashort Pulses in Optical Structures

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a new nonparaxial time-domain beam-propagation method (TD–BPM) based on Padé approximant for modeling ultrashort optical pulses has been proposed and verified. The high efficiency of the technique in modeling long device interaction comes from solving the TD wave equation along one direction and allowing the time window to follow the evolution of the pulse. The accuracy of the method was tested in three different environments of homogenous and nondispersive medium, metallic, and dielectric waveguides and then was applied to model ultrashort pulse propagation in a directional-coupler device. The characterization of the technique shows excellent performance in terms of accuracy, efficiency, and stability, which the conventional paraxial TD–BPM failed to achieve. The new TD–BPM is particularly well suited for the study of unidirectional propagation of compact ultrashort temporal pulses over long distances in waveguide structures.

© 2007 IEEE

PDF Article
More Like This
Application of modified Padé approximant operators to time-domain beam propagation methods

Khai Q. Le, Trevor Benson, and Peter Bienstman
J. Opt. Soc. Am. B 26(12) 2285-2289 (2009)

New method for nonparaxial beam propagation

Anurag Sharma and Arti Agrawal
J. Opt. Soc. Am. A 21(6) 1082-1087 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.