OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 11 — Nov. 1, 2007
  • pp: 3301–3320

Radio Over Fiber for Picocellular Network Architectures

Michael Sauer, Andrey Kobyakov, and Jacob George

Journal of Lightwave Technology, Vol. 25, Issue 11, pp. 3301-3320 (2007)


View Full Text Article

Acrobat PDF (1429 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We have studied RF transmission over various multimode fibers (MMFs) and a standard single-mode fiber, targeting picocellular networks for voice, data, and video applications. Bandwidth requirements of MMF links that are based on vertical-cavity surface-emitting laser (VCSEL) have been extensively studied. The performance of the radio-over-fiber link is assessed in terms of the error vector magnitude. Also conducted was a full system analysis, including the investigation of an achievable dynamic range and a noise figure for different low-cost architectures. This was compared to coax-based RF transmission. The IEEE 802.11 a/b/g standard, as well as other applications like radio frequency identification tracking, was considered. For experimental investigations, we have used both commercial wireless access points and a vector signal generator as a signal source, with two types of directly modulated VCSELs—850-nm sources and 1310-nm high-speed uncooled single-mode AlGaInAs/InP VCSELs. A robust system performance was demonstrated in both 2.4- and 5-GHz RF bands, and record multimode and standard single-mode fiber transmission distances were achieved. A transponder design that can meet system requirements in terms of sensitivity (< -90 dBm) and spurious-free dynamic range (> 95 dB · Hz2/3) for a dual-band wireless LAN (WLAN) fiber-radio picocellular network was developed. A full 14-cell experimental WLAN system with cells of 4-m radius was implemented to study networking issues such as handoff and cochannel interference.

© 2007 IEEE

Citation
Michael Sauer, Andrey Kobyakov, and Jacob George, "Radio Over Fiber for Picocellular Network Architectures," J. Lightwave Technol. 25, 3301-3320 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-11-3301

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited